
 Republic of Iraq

Ministry of Higher Education

 and Scientific Research

University of Diyala

College of Science

 Department of Mathematics

Solution Algorithms for Multicriteria optimization

problem

A Thesis

Submitted to the College of Science, University of Diyala in

Partial Fulfillment of the Requirements for the Master Degree of

Science in Mathematics

 By

Anmar Sabri Hasan

B.Sc. Mathematics / College of Science / University of

Mustansiriyah, 2004

 Supervised by

Assist.Prof.Dr. Adawyia Ali Mahmood Al-Nuaimi

2021 A.D. 1442 A.H.

حِيِ لرَّ

ن ٱ حٰۡۡ لرَّ

 بِسۡمِ الله ٱ

ه للَّّ

ۡ ٱ يرَۡفعَِ ٱ ينَ ءَامَنهواْ مِنكه ِ لََّّ

ينَ ٱُتهواْ ٱوَ ِ ه بِمَاَ تعَۡ ٱوَ ــتٰ دَرَجَ عِلَۡ لۡ ٱلََّّ مَلهونَ للَّّ

ه خَبِ ۞يه

قَ الله العظي صَدَّ

 (١١الأية) -المجادلةسورة

 Dedication

To the soul of my martyr father... May God have mercy on him and

forgive him and put him in his spacious gardens.

To my mother... the tender symbol of love and giving.

To my dear wife... who bore me the trouble of studying.

To my brothers and sisters... in appreciation and respect.

To my children a source of love and tenderness.

To everyone who contributed to the completion of this work, even if it

were complete.

I dedicate the fruit of this work.

Anmar

 Acknowledgements

To begin with, I would like to thank God for giving me this chance, and giving me

the strength, and the patience, to go through with this thesis.

My deepest gratitude and faithful thanks also go to my supervisor, Dr. Adawyia

Ali Mahmood for the support, encouragement, continuous guidance throughout my

work; words can never express my thanks.

Also, I would like to thank the Dean, the Head of the Department of

mathematics and all the faculty of the Department of Mathematics at the College

of Science at Diyala University for being helpful with me.

All my fellow graduate students thank you

Finally, this thesis become a reality with the help of many individuals. I would like

to sincere thanks to all of them.

 Anmar

(Scientific Amendment)

I certify that thethesisentitled“SolutionAlgorithmsforMulticriteria

optimization problem”was prepared by Anmar Sabri Hasan has

been evaluated scientifically ; therefore, it is suitable for debate by

examining committee.

.

Signature:

Name:

Date: / / 2021

(Scientific Amendment)

I certify that the thesis entitled “Solution Algorithms for

Multicriteria optimization problem” was prepared by Anmar Sabri

Hasan has been evaluated scientifically ; therefore, it is suitable for

debate by examining committee.

Signature:

 Name:

 Date: / / 2021

Abstract

i

Abstract

 In this thesis, multicriteria scheduling problem on a single machine is

considered. The three criteria are total completion time ∑Cj , total tardiness ∑Tj

and maximum earliness Emax.

 We aim in this study to find optimal and approximate schedule for the jobs j,

j=1,2,…,n to minimize the multicriteria objective function ∑Cj+∑Tj+ Emax.

 For solving this problem, we present a branch and bound (BAB) algorithm to

find optimal solution. We derived a lower bound (LB) to be used in a branch and

bound (BAB) algorithm. On a vast collection of test problem, computational

experiments for the BAB algorithm are provided. The NP-hardiness of this

problem demonstrate that finding an optimal solution immediately is not always

achievable and the problem is solved for n =13. As a result, rather than spending a

lot of time searching for the best solution, we employ local search algorithms to

uncover approximation answers that are close to the best but take less time. The

problem is solved using three local r search algorithms: descent method (DM) ,

simulated annealing (SA) and Genetic algorithm (GA). The algorithms DM , SA

and GA are compared with the BAB algorithm in order to evaluate effectiveness of

the solution methods. Conclusions are formulated on the efficiency of the

algorithms, based on findings of computational experiments.

II

List of symbols and abbreviation

Symbol Description

BAB Branch and Bound

α/β/γ Classification of problem

di Due date of job i

DP Dynamic programming

EDD Earliest Due Date

ILB Initial Lower bound

i Job i

β Jobs characteristics

Lex Lexicographical

LB Lower bound

α Machine environment

Cmax Maximum completion time or makespan

Emax Maximum earliness

 Lmax Maximum lateness

Tmax Maximum tardiness

MST Minimum slack time rule

NP Non-deterministic Polynomial time

n Number of jobs

pmtn Preemption

pi Processing time of job i

ri Release date of job i

SPT Shortest processing time

SWPT Shortest weighted processing time

DM Descent Method

SA Simulated Annealing

III

TS Tabu Search

GA Genetic algorithm

si Slack time of job i

Ci The completion time of job i

Fi The flow time of job i

Li The lateness of job i

fmax The maximum function

γ The objective function

∑Ci The sum of completion time

∑Ti The total tardiness

Ui The unit penalty of job i

wi The weighting of job i

∑wiCi Total weighted completion time

∑wiUi Total weighted number of tardy jobs

UB Upper bound

V

List of contents

Titles Page

Abstract I

List of symbols and abbreviations II

List of contents V

Introduction

i Introduction i

Chapter One: Scheduling Problem

1.1 Scheduling problem (Definition and Classification) 1

1.1.1 Machine Scheduling 1

1.1.2 Basic Scheduling Concepts 1

1.1.3 The problem classification 3

1.1.4 A few examples of scheduling problems 4

1.1.5 Some Types of Machine Scheduling Problems 4

1.2 Solution Approaches 6

1.2.1
Basic Rules and Main Results to Find Optimal

Solution P-type Machine Scheduling Problem
6

1.2.2
Mathematical Programming to Solve NP-hard

Machine Scheduling Problem
7

1.2.3 The Heuristic Method 9

1.3 Multicriteria Scheduling 10

Chapter two: Multi Criteria Scheduling Problem

2 Multicriteria Scheduling problem 12

2.1 Basic Concept of Multicriteria Scheduling 12

2.2 Finding the Optimal Solution 13

2.3 Local Search Heuristic Methods 15

2.3.1 Introduction 15

2.3.2 Preliminaries 15

2.3.3 Representation of the Solution [4] 16

2.4
Algorithms for Local Search: The Fundamental

Notation
17

2.4.1 Descent Method (DM) 17

2.4.2 Algorithm of Simulated Annealing (SA) 18

2.4.3 Tabu Search (TS) method 19

2.4.3.1 (TS) algorithm 20

2.5 Genetic Algorithm (GA) 21

2.5.1 Introduction 21

VI

2.5.2 Basic Stricture of Genetic Algorithm 22

2.5.2.1
Encoding of the solution

22

2.5.2.2 Initial Population 22

2.5.2.3 Fitness (evaluation) 23

2.5.2.4 Selection 23

2.5.2.5 Genetic Operators 23

 2.5.2.6 Substitute 24

2.5.2.7 Parameters Selection 24

2.6 Genetic algorithm 25

2.6.1 Initial population 25

2.6.2 Selection 26

2.6.3 Genetic Operators 27

2.6.4 Termination 31

2.7 Some applied examples of Multicriteria problems [26] 31

2.7.1 Some examples 31

2.7.2 Chemical and electroplating industries 32

2.7.3 Steel hot rolling mill industry 32

2.7.4 Car assembly 33

Chapter Three: Minimizing Total Completion Time with Total Tardiness

and Maximum Earliness

3.1 Formulation of the problem 34

3.2
An Application of the Branch and Bound (BAB)

Algorithm for the Problem (P)

35

3.3 Practical Results
 38

3.3.1 Determinstic the Parameters for the Algorithms
38

3.3.2 Computational Results
 40

3.3.3 Tables of Results
 41

Conclusions and Future Work

3.4.1 Conclusions 48

References

References 49

Abstract (Arabic)

Abstract (Arabic) أ

Introduction

Introduction

i

Introduction

 The scheduling problem is one of the most studied problems in

combinatorial optimization. It can be defined as a decision making process that is

used on a regular basis in many manufacturing and services industries. It is

concerned with allocating resources to tasks over certain time periods with the goal

of minimizing one or more objectives [1]. The scheduling problem is defined as

the challenge of assigning a group of machines in a given amount of time while

adhering to certain constraints [2].

Real-world problems arising in various applications domains are usually

strictly related to time [2].

 Due dates or deadlines are commonly used in scheduling theory to simulate

time constraints, and the quality of schedules is calculated using these factors [2].

Minimize or maximize F(s) = (f1(s), f2(s),...,fk(s) for multicriteria (multiple

objective) scheduling problems, such that s∈S, where s stands for the solution, S is

the set of feasible solutions, k is the number of objectives in the problem, and F(s)

is the image of S in the k-objective scheduling problem. The goal of many issues is

to determine the best arrangement of a group of discrete items that meets additional

requirements and limitations. If the problem has many objectives, numerous

criteria exist to assess the quality of the solution, and each of these criteria has an

objective (min. or max.) linked to it [3].

 There are three types of Multicriteria problems. The first type of these

problems consists of identifying all sequences that minimize the first objective. The

optimal sequence for that task is picked from among those that minimize a second

objective. The hierarchical approach [3] is the name given to this method. The

second of these Multicriteria problems, when the criteria are weighted differently

Introduction

ii

an objective function can be defined as the sum of weighted functions and

transform the problem into a single criterion scheduling problem. This approach is

called simultaneous optimization along with the third type of Multicriteria

problems. The third one of these multicriteria problems is going to consider both

criteria as equally important. This problem is to find a sequence that does well on

both objectives. Note that this optimization is called a priority optimization, is

clearly the most difficult variant of the three approaches; if we can solve this

problem (finding the set of pareto optimal points), then we will solve the other two

as well.

 For a single machine scheduling with multicriteria, Emmons [4] addressed the

hierarchical problem of minimizing ∑ Cn
j=1 j based on the constraint that fmax is

minimal; this problem is denoted by 1/fmax ≤ f
*
/ ∑ Cn

j=1 j, where f
*
 signifies the

optimal solution value of the 1//fmax problem. The 1//fmax Lawler's algorithm solves

the issue in O(n
2
) time algorithm [5].

The importance of multicriteria scheduling has been recognized in [6].

Hoogeveen [7] studied a number of bi-criteria scheduling problems, he proved

strong NP-hardness of bi-criteria problems involving ∑wjCj and Lmax. Hoogeveen

surveyed the most notable results on multicriteria scheduling [8]. Nagar et al. [9]

provided a questionnaire of the multiple and bi-criteria scheduling research

involving multiple machines. Van Wassenhove and Gelders [10] proposed a

pseudo-polynomail algorithm for finding all efficient schedules with respect to ∑Cj

and Tmax . Al-Nuaimi [11] proposed an algorithm to find efficient solutions for

multicriteria scheduling problem of total completion time ∑Cj with maximum late

work (Vmax) and maximum lateness (Lmax) on a single machine. In [12] Al-Nuaimi

presented some methods to identify the most precise and best possible solutions to

Introduction

iii

the three-criteria problem maximum lateness Lmax , maximum earliness Emax and

sum of completion time ∑Cj in hierarchical case. Also, Al-Nuaimi [13] proposed

an algorithm to solve the problem 1//F(∑Cj, ∑Tj, Lmax) to find the set of efficient

solutions. Local search method proved that the led to significant better results than

traditional heuristics if they are implemented carefully. Within a reasonable

amount of time, local search algorithms can identify the best approximation

solution [2].

In this thesis, we look at how to schedule n jobs on a single machine while

keeping the total cost low completion time (∑Cj) with total tardiness (∑Tj) and

maximum earliness (Emax).

 This thesis is organized as follows:

Chapter one gives a description of machine scheduling problem, including

the assumption for machines, jobs and optimality criteria. Classification and

representation of scheduling problem are also mentioned. Chapter two considers

basic concepts of multicriteria scheduling optimization and local search methods

with some definitions and considers some models studied of multicriteria

scheduling problems. In chapter three, we present the mathematical form for the

simultaneous multicriteria problem, which is recognized NP-hard, we derive a

good lower bound based on objective decomposition, in order to design a branch

and bound the problem-solving algorithm. We also present computational

experiments for the exact solution and local search algorithms in chapter three.

Chapter One

Scheduling Problem

Chapter One Scheduling Problem

1

1.1 Scheduling Problem (Definition and Classification)

1.1.1 Machine Scheduling

There has been a large number of researches on production scheduling

problems since the original of mathematical formulations typically, this entails

assigning machines to process tasks (jobs) over time in order to refine certain

output parameters, either precisely or roughly.

 The literature can be divided into two major categories:

a- Deterministic scheduling research: where all problem parameters are

considered to be well-known.

b- Stochastic scheduling research: where at least some parameters are random

variables.

In deterministic scheduling research a large view is taken and multiple

machines are often modeled. The deterministic approach is to plan the work

through the machines over a period of time in the best possible way, given a

specific objective to optimize. The implicit assumption here is often that a

schedule can be executed directly as developed.

However, several scholars have recently recognized that this unlikely

scenario exists in many manufacturing settings, and have attempted to apply the

deterministic approach to circumstances involving some complexity [14].

1.1.2 Basic Scheduling Concepts

 We begin by adding some key notations, focusing on performance

parameters without going into details about system environments, etc. We assume

that there are n jobs, denoted by 1,...,n, that must be scheduled on a set of

machines that are always available from time zero onwards and can only handle

one job at a time.

Chapter One Scheduling Problem

2

We only state the notation used in this study for the single machine, jobs j

(j=1,...,n):

 pj: This means the processing time.

 rj: A release date of job j, i.e. the earlier time of which the pj of job begin.

 dj: This means the due date.

 Wj: This means the weighted.

 We can now compute for job j for a given sequence of jobs:

1- The completion time Cj.

2- The flow time Fj=Cj-rj.

3- The lateness Lj= Cj-dj.

4- The tardiness Tj=max } Cj -dj,0{.

5- The earliness Ej=max} dj-Cj,0{.

6- The unit penalty Uj=1 if Cj> dj and Uj = 0 if Cj≤ dj.

The following performance criteria appear frequently in the literature [15].

For a given scheduling δ we compute:

1- Cmax (δ) = maxj (Cj) (maximumscompletion time).

2- Emax (δ) = maxj (Ej) (maximum earliness).

3- Lmax (δ) = maxj (Lj) (maximum lateness).

4- Tmax(δ) =maxj (Tj) (maximum tardiness).

5- ∑ (Wj) Cj (δ) = total (weighted) completion time.

6- ∑ (Wj) Ej (δ) = total (weighted) earliness.

7- ∑ (Wj) Tj (δ) = total (weighted) tardiness.

8- ∑ (Wj) Uj (δ) = total (weighted) number of tardy jobs.

Chapter One Scheduling Problem

3

 All these criteria except for Emax and (∑Wj) Ej are regular, i.e., the value of

the objective function can not be decreased by inserting idle time into the

schedule.

 1.1.3 The problem classification

A notation which is commonly used to formulate scheduling problem is

based on three fields: α/β/γ [7]. In this notation, α describes the machine

environment, i.e. the structure of the,

 -Single machine or multiple machines.

- Machines that are the same or that are different.

The field β explains the problem's constraints as well as other processing

conditions. Among the constraints that can exist [14], [16]:

-Preemption allowed or not, i.e. whether the processing of jobs can be

Interrupted and resumed.

-Whether special processing conditions (release date, due date, setup times,

etc,) specified or not, and if these are not and if these are deterministic or

stochastic.

-Fixed or dynamic arrival of jobs, etc.

The criteria (γ) used to evaluate the equality of the scheduling include:

-Minimum completion time or make span Cmax.

-Maximum earliness Emax = max (Ej) for j=1,…,n.

-Maximum tardiness Tmax = max (Tj) for j = 1,…,n, etc.

Chapter One Scheduling Problem

4

1.1.4 A few examples of scheduling problems

We give a few examples on three fields classification of scheduling

problems. The 1/ri/∑Wi Ci is the problem of minimizing total weighted

completion time on one machine subject to non- trivial release dates. The 1//∑Wi

Ci+Tmax is the problem of determining the best order for jobs to be processed on a

single machine in order to minimize the amount of the overall weighted

completion period and the maximum tardiness.

1.1.5 Some Types of Machine Scheduling Problems

Due to the large variety of machine scheduling problems, several

classification schemes have been proposed based on different dimensions [17].

The number of available machines and how they are arranged (see figure (1-1)) is

example of such dimension. The simplest problem is the one-machine sequencing

problem: all jobs must be processed on a single machine, and no two jobs can be

processed at the same time. There are four types of scheduling issues in a work

store [5]:

a-Scheduling a single machine [5]

The single machine scheduling problem entails allocating a single resource

to a collection of jobs. This is achieved by creating a series that involves each job

and assigning the jobs to their respective sources. Each job should have a priority,

a ready time, a processing time, and a due date assigned to it. On the basis of this

data and the job series, the value of the performance measure can be computed.

This problem grows in complexity at an exponential rate as the number of jobs to

be scheduling increases.

Chapter One Scheduling Problem

5

b-Flow Shop Scheduling [5]

In each of the m machines, there are n jobs to process, i.e., each job consists of m

steps or operations. Each job is processed in the same order through the

processing stages, i.e., from the first to the last machine. The problem is to find

the sequence in which the jobs should be processed so that the given objectives

are achieved.

c-Job Shop Scheduling [5]

This is a general case of the flow shop scheduling problem, in which each

job is not necessarily sequenced through the machines in the same way. As in

a flow shop, there are n jobs with m operations each of which are predefined and

fixed; for example, Jm/dj/Cmax denotes a work shop configuration in which all jobs

have a due date and the aim is to minimize the maximum completion time.

d-Scheduling of Open Shops [5]

The open shop is a more general case of the job shop scheduling problem

as before, there are n jobs consisting of m steps to be processed in m machines.

Each work is sequenced differently across the machine, and determining the best

sequences for each of the n jobs is part of the problem. And, in addition to the

work processing schedule, the sequence of steps for each job must be decided.

Chapter One Scheduling Problem

6

Figure 1-1: Classification of machine Schedule Problems [17]

Definition: P- type problem (1.1.6)

 The problems for which the polynomial bounded algorithm for solving this

problem, were found.

 Definition: NP- type problem (1.1.7)

 The problem that haven’t a polynomial bounded algorithm to solve this

problem.

1.2 Solution Approaches

1.2.1 Basic Rules and Main Results to Find Optimal Solution for p-

Type Machine Scheduling Problem

The common basic rules which help us in finding a solution for scheduling

problem:

1- Smith rule or SPT (shortest processing time) rule, that is, sequencing the jobs

are listed in non-descending order of processing time. This rule e solves the

problem 1//∑ Cj j [18] more general is the SWPT rule, that is sequencing the

Machine Schedule
Problems

Single stage system

Single
machine

parallel
machines

identical
machines

uniform
machines

unrelated
machines

Multistage system

Flow
shope

Job shope
Open
shope

Chapter One Scheduling Problem

7

jobs in non-decreasing order of their processing time to the weight ratio which

solves the problem 1//WjCj.

2- The earliest due date or the EDD rule, which solves the problem 1//Lmax by

sequencing the jobs in non-decreasing order of their due dates. For the 1//Tmax

query, this rule also minimizes Tmax [19].

3- The longest processing time or the LPT rule, i.e., sequencing the jobs in a

non-increasing order of processing time [20], which minimize

∑ Ejj for the problem 1/Cj≤ dj/ ∑ Ej j .

4- The minimum slack time or MST rule, that is, sequencing the jobs in non-

decreasing order of their slack times (sj=dj-pj). In a single machine

environment with ready time set at zero, which solves 1//Emax problem [6].

1.2.2 Mathematical Programming to Solve NP-hard Machine

Scheduling Problems

There are some mathematical programming techniques used to solve the

combinatorial optimization problem, these techniques are also used for

scheduling problems [21].

Many scheduling problems can be formulated as a (mixed) programming

problem; in that case, standard integer programming solution procedure can be

used. Both Conway et al. [22], and Baker and Schrage [23] discussed integer-

programming formulation of scheduling problems.

Complete enumeration method generates schedules one by one, searching

for an optimal solution. This method lists all possible schedules and then

eliminates the non-optimal schedules from the list, leaving those, which are

optimal. Clearly searching for an optimal schedule among all possible schedules

using complete enumeration is not suitable even for problems of small size.

Chapter One Scheduling Problem

8

The dynamic programming (DP) method is an implicit enumeration

technique that can be used to solve any optimization problem that can be solved

by solving the derived recurrence relation for this problem [21].There are some

difficulties for this method, one of them is the difficulty of finding a good way for

brake down problem into stages so that a convenient computation is rather large,

which means that the computation grows to exponential rate with increasing in

the size of problem.

Branch And Bound (BAB) method is a general method for solving many

types of combinatorial optimization problem. BAB method is the most wildly

solution technique that is used in scheduling [24]. This method is the typical

example of the implicit enumeration approach, which can find an optimal solution

by systematically examining subset of feasible solution. The procedure is usually

described by means of search tree with nodes that correspond to these subset.

From each node for a partially complete solution there grows a number of new

branches which replaces the original one by set of new smaller problems that are

mutually exclusive. There are two forms of branching that are commonly used:

1- The forward branching, that is the jobs are sequenced one by one from the

beginning.

2- The backward branching, that is, the jobs are sequenced one by one from the

end.

To minimize an objective function Z, for a particular scheduling problem,

the BAB method successively partitions the problem into subsets by using a

branching procedure and computes bound by using a lower bounding procedure.

These methods are used to exclude subsets that are found to be devoid of any

optimal solution. This eventually leads to at least one optimal solution. The lower

bound (LB) on the solution to each created sub problem is calculated using the

bounding method. For each node we calculate a (LB) which is the cost of the

Chapter One Scheduling Problem

9

scheduling jobs (depending on the objective function and the cost of the

unscheduled jobs (depending on the derived lower bound)). If this node has a

value (LB) greater than or equal to the upper bound (UB) then this node is can

called the upper bound is usually defined as the minimum of the values of all

feasible solutions currently found. If branching reaches a full sequence of jobs,

that sequence is evaluated, and if its value is less than the current upper bound

(UB), this (UB) is reset to that value. We repeat the procedure until all nodes have

been considered, that is, LB≥UB for all nodes in the search tree. An optimal

solution for this problem is a feasible solution with this (LB).

 In BAB procedure one can introduce dominance rules (if possible) to

specify whether a node can be eliminated before computing its (LB) which reduce

the computation time by ignoring the calculations of the dominated nodes and

their successors.

1.2.3 The Heuristic Method

It's evident (from the previous section) that utilizing mathematical

programming algorithms to tackle a particular problem could take a lot longer

than it usually does for large problems. Indeed, even for a minor issue, there is no

guarantee that a solution will be found immediately. Sometimes we use a

heuristic scheduling instead of the optimal schedule, that is, we can find near

optimal solution. Reeves [25] the heuristic technique is defined as follows: A

heuristic which seek good (i.e., near optimal) solution at a reasonable

computational cost without being able to guarantee either feasibility or

optimality, or even, in many case to state how close to optimality a particular

feasible solution.

Chapter One Scheduling Problem

10

1.3 Multicriteria Scheduling

Many researchers have been working on multiple criteria scheduling with

the majority of work being on bi-criteria scheduling. When two criteria are used

instead of one, the problem becomes more realistic. One criterion can be chosen

to represent the manufacturer’s concern while the other could represent

consumer’s concern. Several studies evaluate the literature on multiple criteria

scheduling. Nager et al.(1995) [9], and Tkindt and Billaut (1999) [26] review a

special version of the problem, Lee and Vairaktarakis (1993) [27] review a

particular variant of the problem in which one criterion is fixed to its greatest

feasible value and the other criterion is attempted to be optimized under this

restriction.

 Hoogeveen (1992) [7] studied a number of bi-criteria scheduling problems.

Most real-world optimization problems have several, often conflicting objectives.

Therefore, the optimum for a multiobjective problem is typically not a single

solution. It is a set of solutions that trade-off between objectives.

 There are three different sorts of problems with many criteria that can be

detected:

The first of these problems entails determining all sequences that minimize

a first objective. The optimal sequence for that task is picked from among those

that minimize a second objective. Assume we've decided on two performance

criteria to consider, say f and g. If f is more important than g, then the approach is

to find the optimum values with respect to criterion f, say f
*
, and choose from

among the set of optimum schedules for f the one that performs best on g, such an

approach is called hierarchical optimization or lexicographical optimization,

which is denoted by Lex (f,g) in the third field of the α/β/γ notation scheme. This

method is known as a hierarchical approach.

Chapter One Scheduling Problem

11

When the criteria are weighted differently, the second of these multiple

criteria problems is an objective function that can be expressed as the sum of

weighted functions and turns the difficulties into a single criterion scheduling

problem. Simultaneous optimization is the name given to this method, as well as

the third type of multiple criteria issues. Also in these multiple criteria problems,

both criteria are going to be considered as equally important. The issue is

determining a sequence that achieves both goals. To solve this problem, the main

concept is that we select a subset of solutions from a larger set that contains

efficient solutions.

 Theorem (1.3.1) [8]

 There is an extreme schedule that minimizes F (f,g) if the composite

objective function F (f,g) is linear.

Chapter Two

Multi Criteria Scheduling Problem

Chapter Two Multi Criteria Scheduling Problem

12

2 Multicriteria Scheduling problem

2.1 Basic Concept of Multicriteria Scheduling

 For several years, scheduling researchers focused on single, non-

decreasing work completion period performance metrics. More than one

efficiency metric is of concern in most real-world scheduling applications [28].

The three types of bi-criteria scheduling problems are as follows. Assume that

we've chosen two success criteria to consider, say f and g [29].

1. In the event that output criterion, say f, is significantly more significant than

the other, an easy strategy is to identify the optimal value with regard to

criterion f, which is indicated by f*, and pick the one that performs the best

on g from the set of optimum schedules for f, (hierarchical or

lexicographical optimization). This is represented by Lex (f, g), where the

criterion stated first in Lex's argument is the most relevant. The primary

criterion is f, and the secondary criterion is g. The earliest work in this field

is Smith [18]. Work on minimizing overall completion time with no tardy

jobs.

Definition (2.1.1) [18]:

 A feasible schedule for the problem 1//Lex (f, g) is one that meets the

fundamental requirement f.

Definition (2.1.2) [18]:

 An optimal schedule for 1//Lex (f,g) is a feasible schedule that minimizes

the secondary criterion g.

If no criterion is dominant, then lexicographical optimization may lead to

a schedule that is unbalanced. In this case, simultaneous optimization may be

Chapter Two Multi Criteria Scheduling Problem

13

better choice. Evans [3] and Fry [6] distinguish different approaches in

simultaneous optimization.

2. Apriority optimization: For any given function F, both criteria are used to

form a single composite objective function F (f (ơ), g (ơ)), where ơ is the

timetable taking into account, and an optimal solution to this problem is found.

This function F, like δ f (ơ) +g (ơ), can be linear.

Where δ is that constant which shows the in relation to the significance of

criterion f in relation to criterion g, However, it might also it could be a

quadratic or even more exotic function.

3. Interactive optimization: in this case one or more obtained solutions are given,

the decision maker must indicate which one is preferred, and if not satisfied yet,

in which direction the search should continue.

2.2 Finding the Optimal Solution

 It's difficult to find algorithms that have the best solution for most multi-

objective optimization problems, such problems are called NP- hard.

 Many authors pointed out the total completion time (∑Ci), the total tardiness

(∑Ti), maximum completion time (Cmax), maximum tardiness (Tmax) and

maximum earliness (Emax) are the most prominent measure among the

scheduling objectives in industrial applications.

We address precise approaches in this subsection's reminder. In the

problem of minimizing total tardiness is NP-hard, any problem that includes 1//

∑j Tj as a sub problem is NP-hard as well. It has been shown that certain in

polynomial time, particular instances can be solved. The EDD-order solves the

problem 1/pj =p/ ∑j(Ej+Tj) according to Garey et al.(1988) [30]. This result hold

true for the problem 1/pj=p/ ∑j (αEj+βTj). Verma and Dessouky (1998) [31]

showed that the problem 1/pj=p/ ∑j (αEj+βTj) is solvable in polynomial time if

Chapter Two Multi Criteria Scheduling Problem

14

the weights are agreeable, i.e., the works can be renumbered as α1 ≤ α2 ≤ …….≤

αn and β1 ≤ β2 ≤ ……..≤ βn, this covers the case with symmetric weights αj =βj.

 Fry and Kenog Leong (1987) [32] made the initial try to tackle the

problem in general solving the 1//∑j (αEj +βTj) is a problem of integer linear

programming; this was workable for cases with up to 12 jobs. Based on two

lower bounds, Kim and Yano (1994) [33] applied Branch And Bound to solve

the issue 1/ ∑j(Ej +Tj); they can solve instances with up to 20 jobs. Hoogeveen

and Van de Velde (1996) [34] reported a similar result when they apply Branch

and Bound to solve the 1//(αEj+βTj) problem. They suggest six lower boundaries

and a set of dominance principles, however they are unable to tackle cases with

more than 25 jobs. Recently, better results have been reported by Sourd and

Kedad Sidhoum (2003) [35] and Bulbul et al.[36] (submitted for publication).

In both papers the problem is formulated as an integer linear programming

problem using a time-indexed formulation. Each task Jj is split into Pj unit

duration segments, where one of the constraints signals that the segments

forming job Jj (j=1...n) must be assigned to consecutive intervals.

 The problem in which two maximum cost criteria are minimized, 1//F

(fmax, gmax), is solvable in O (n
4
) time, according to Hoogeveen (1996b) [15]. The

ε-constraint technique is used in this algorithm: there are some O (n
2
) Pareto

optimum points, and each sub problem is solved in O (n
2
). When it comes to the

maximum cost criterion gmax is such that the elapsed time can be reduced to

O (n
3
 log n). After renumbering g1 (t)≤ g2 (t)≤.... ≤gn (t) for all t∈ [0, ∑j pj], the

running time can be reduced to O (n
3
 log n); notice this Lmax satisfies this

constraints. Hoogeveen also demonstrates a generalization of the above

algorithm can solve the problem of simultaneously minimizing three maximum

cost criteria in O (n
8
) time. There is only one Pareto optimum point, and the

number of them is limited O(n
2
), takes O(n

2
) time O(n

6
). This algorithm can be

extended to find all Pareto optimal points for a set of K maximum cost

Chapter Two Multi Criteria Scheduling Problem

15

parameters, but since there is no polynomial upper bound on the number of

Pareto optimal points for K≥ 4, it is ambiguous if this algorithm is polynomial

for fixed K. (for arbitrary K the problem is strongly NP-hard). Sourd (2001)

[37] considers the problem 1/ rj, pmtn /F (fmax, gmax). He demonstrates that the

number of Pareto optimal points is bounded by O(n
2
), and that each Pareto

optimal point can be calculated in O(n
2
) time, resulting in an O(n

4
) algorithm

overall.

Because each of the sub problems can be solved as responsibilities

problem, Chen and Bulfin (1990) [38] show that the set of Pareto optimal points

can be calculated by applying the ε-constraint approach for any combination of

two performance parameters, one of which is Tmax. They claim that instead of

Tmax, fmax or Emax can be achieved a similar result.

2.3 Local Search Heuristic Methods

2.3.1 Introduction

 The term heuristic comes from the Greek word (heuriskein) which means

to discover or find [39]. A heuristic, according to Reeves [25], is a procedure

for finding really good (i.e., near optimal) solutions at a low computational cost

without being able to guarantee feasibility or optimality, or even, in certain

cases, to state how close to optimality a particular feasible solution. The best

solution can be found using the local search approach in a fair amount of time.

2.3.2 Preliminaries

 The first time local search was used to solve NP-hard problems was in

the late 1950’s and early 1960’s [3]. Local search methods have the same

feature: they iteratively move according to some, from one viable solution to

another given rules, exploring the search space. Many of these methods are

inspired from natural and they explore neighborhood of feasible solution. Local

Chapter Two Multi Criteria Scheduling Problem

16

search strategies vary in the problem representation they use, the neighborhood

description they use on that representation, and the approach they use to search

through that neighborhood. Evolution has influenced some local search

methods. This suggests the need for the following definition:

Definition 2.3.2.1 [4]

 An instance of a combinatorial optimization problem is a pair (S,f),

where the solution set S is the set of all feasible solutions and the cost function f

is a mapping f:s→R. The problem is to find a globally optimal (minimum)

solution, i.e. an s
*∈S, such that f(s

*
)≤ f(s) for all s∈S.

2.3.3 Representation of the Solution [4]

Solution Representation depends on the problem specification. In a

scheduling problem of n jobs, a solution is represented by a permutation of the

integer 1,...,n.

Definition 2.3.3.1 [2]

 A neighborhood function N* is a mapping N
*
 : S→ P(S) which specifies

for each s∈ S subset N
*
(s) of S neighbors of s.

 For permutation, there are three traditional neighborhoods. They're

described through making use of specific moves to a series of tasks [21].

1- Shift (insert): This neighborhood is obtained by removing a job from one

position in the sequence (1,2,3,4,5,6,7,8) and insert it at another position either

before (left insert) or after (right insert) the original position. For example the

schedules (1,5,2,3,4,6,7,8) and (1,2,3,4,6,7,5,8) are booths neighborhoods.

2- Interchange (swap): Swap two jobs that aren't necessarily next to each other.

For example the schedule (1,6,3,4,5,2,7,8) is a neighbor.

Chapter Two Multi Criteria Scheduling Problem

17

3- Insert a block: Insert a subsequence of jobs in a new position. The schedule

(1,4,5,2,3,6,7,8) is an example of a neighbor.

Definition 2.3.3.2 [4]

 Let N* be a neighborhood function and (S,f) be an example of a

combinatorial optimization problem. A solution s
*∈S is referred to as a local

optimal (minimal) solution with respect to N
*
 if f(s

*
) ≤ f(s) for all s∈ N

*
(s

*
). The

neighborhood function N
*
 is called exact if every local minimum with respect to

N
*
 is also a global minimum.

2.4 Algorithms for Local Search: The Fundamental Notation

The following is a feature that all local search methods have in common:

1. Initialization: As the present solution, the start feasible solution s is

generated randomly or using a heuristics method or some known rule. The

value of the objective function in the present solution is computed.

2. Neighborhood generation: A move is made through the solution space S

from neighbor to neighbor to select a neighbor s' of s.

3. Acceptance test: Each local search method has its own acceptance test to

determine whether s’ replace s as the current solution.

4. Criteria for termination: The algorithm is repeated until some termination

criteria are satisfied. The output will be the best solution generated.

2.4.1 Descent Method (DM)[2]

 The Descent Method is a simple form of neighborhood search methods in

which only improving moves are allowed. The resulting solution is a local

optimum, not necessarily a global optimum.

Chapter Two Multi Criteria Scheduling Problem

18

The structure of a Descent Algorithm is presented in the figure (2-1)

 Step (1): Choose a starting solution s∈S.

 Step (2): Select a element s’ ∈ N
*
 (s); ∆=f(s’)-f(s);

 If ∆<0 then s=s’.

 Step (3): If f(s’)≥f(s), ∀ s’ ∈ N
*
 (s) , then stop; if not, go back to step (2).

Figure (2-1) Structure of a Descent Algorithm

2.4.2 Algorithm of Simulated Annealing (SA)

 Simulated annealing (SA) has its origin in statistical physics, where the

process of cooling solids slowly until they reach a low energy state is called

annealing. It was originally proposed by Metropolus et al. [21] and was first

applied to combinatorial optimization problems by Kirkpatrick et al. [40].The

sequence of the goal function values in such an algorithm does not have to

decrease monotonically. A neighbor s' in a specific neighborhood is generated

(typically randomly) from an initial sequence s.

Then the difference ∆= F(s') –F(s), in the values of the objective function

F is calculated. When it comes to ∆< =0, sequence s' is accepted as the new

iteration's starting solution. In the case ∆>0, sequence s’ is accepted as new

starting solution with probability exp (-∆/T), where T is a temperature-related

parameter. Typically, the current temperature is high in the early phases, making

it relatively easy to escape from a local optimum in the first rounds.The

temperature normally drops after a set of sequences have been created. Often

this is done by a geometric cooling scheme which we will also apply.

 In this case, the new temperature T
new

 has been chosen so that T
new

 =λ

T
old

, where 0<λ<1 and T
old

denoting the old temperature and T
new

denoting the

new temperature. A possible stopping criterion would then be a cycle of a final

 Step (1): Choose a starting solution s∈S.

 Step (2): Select a sequence s’ ∈ N
*
 (s); ∆=f(s’)-f(s);

 If ∆<0 then s=s’.

 Step (3): If f(s’)≥f(s), ∀ s’ ∈ N
*
 (s) , then stop; if no stopping criteria is meet,

go back to step (2).

Chapter Two Multi Criteria Scheduling Problem

19

temperature, which is sufficiently close to zero. might therefore be used as a

stopping condition. As in [41] we ascertain on the basis of the initial temperature

T=10.

Simulated Annealing Algorithm

);

 P(∆,tk) =exp (-∆/tk);

 If ∆≤ 0, then s=s’, and if f(s)<f(s
*
) , then s

*
=s; else (∆>0);

 If a set of numbers is chosen at arbitrary, [0,1] ≤ p (∆,tk) , then s=s’ ; G=G+1,

Step (3): If G≤ B return to the previous step (2),

Step (4): Return to step (2) until some Stopping condition are fulfilled; update temperature;

k=k+1;

2.4.3 Tabu Search (TS) method

 Figure (2-2) SA algorithm

 2.4.3 Tabu Search (TS) method

 The origins of Tabu Search (TS) can be traced back to the 1960s and

1970s, and was Gupta presented it in its current form by (1989) [42]. The vast

majority of TS applications began in the late 1980s [25]. As the name implies,

one of the major concepts of TS is the use of a flexible memory (tabu list) to

tabu particular moves for a period of time. When a move is chosen to lead the

search from the current solution to its neighbor solution, it is immediately

allocated to the tabu list in every iteration of TS. For a lot of iterations after that,

this move will not be chosen. The size of the tabu list is determined by the

number of iterations, and it is limited to a particular length. When the list

reaches its maximum length, the move with the oldest assignment is removed

Step (1): Choose an initial solution s ∈S, s*=s; a starting temperature t0>0; k=0, G=1

 Step (2): Define B; select s’ ∈ N
*
(s); ∆=f(s’)-f(s);

 P(∆,tk) =exp (-∆/tk);

 If ∆≤ 0, then s=s’, and if f(s)<f(s
*
) , then s

*
=s; else (∆>0);

 If a set of numbers is chosen at arbitrary, [0,1] ≤ p (∆,tk) , then s=s’ ; G=G+1,

Step (3): If G≤ B return to the previous step (2),

Step (4): Return to step (2) until some Stopping condition are fulfilled; update temperature;

k=k+1;

Chapter Two Multi Criteria Scheduling Problem

20

from the list and the most recent assignment is inserted. With an appropriate

design of the tabu list, TS is able to prevent cycling of the search and guide the

search to the solution regions which have not been examined and approach to

good solutions in the solution space. However, design of the tabu list may also

prohibit the search to appealing solution regions. To compensate for this

disadvantage, Gupta suggested the use of the concept of (aspiration criterion)

defined as follows: if a specific move is currently tabued and has the potential

to lead the search to good solution regions, that move should be removed from

the tabu list (aspired). The most prevalent one is when a tabued move is

removed from the tabu list if it can provide a better solution than the existing

one [42].

2.4.3.1 Tabu Search (TS) algorithm

 The (TS) algorithm discuss each of the following issues:

a) Initialization

 Determine the initial solution by an effectively sequence.

b) Neighborhood Generation,

 The stander methods can be used here (swap or insert); also one can use any

modified method to generate a new neighborhood.

c) Termination criterion

 Stopping criterion for (TS) chosen by time less then 10m or by end of all

iteration.

Chapter Two Multi Criteria Scheduling Problem

21

The outline of (TS) is given by the structure below:

 Initial solution should be chosen (or generated at random) (

 put (p) as a present solution (s)

 put (cost (s)) as a present solution (s)

 create a tabu list that only contained (s)

2. If the termination requirement is not met,

3. Create (Ṕ) neighborhood for (s) (by insert or swap)

4. Calculate the cost (Ṕ)

5. If cost (Ṕ) < f

6. s = p′ (s ← p′) (approve the change)

7. f = cost (p′) (f ← cost (p′)) (modify the existing value)

8. tabu list= tabu list + p'

9. else if cost(p') = f

1

 Figure (2-3) TS algorithm procedure

2.5 Genetic Algorithm (GA)

2.5.1 Introduction

 John H. Holland [43] was the first to suggest Genetic Algorithms (GA).

step 1. Initialization:

 Initial solution should be chosen (or generated at random) (p)

 put (p) as a present solution (s)

 put (cost (s)) as a present solution (f)

 create a tabu list that only contained (s)

step 2. If the termination requirement is not met,

step 3. Create (Ṕ) neighborhood for (s) (by insert or swap)

step 4. Calculate the cost (Ṕ)

step 5. If cost (Ṕ) < f

step 6. s = p′ (s ← p′) (accept the move)

step 7. f = cost (p′) (f ← cost (p′)) (modify the existing value)

step 8. tabu list= tabu list + p'

step 9. else if cost(p') = f

step 10. If p' tabu list

step 11. s= p' (s ← p′) (accept the move)

step 12. tabu list= tabu list + p'

step 13. end

step 14. end if

step 15. end while

Step 16. Solution =s

16. solution = s

Chapter Two Multi Criteria Scheduling Problem

22

They are search algorithms that simulate the biological evolution process by

exploring a solution space.

Genetic algorithms work with the population of solution each solution is

represented as a string the (GA) technique based on evolution's mechanism. The

solution space is usually represented by a population. New structures are

generated by applying simple genetic operators such as (select, cross-over, and

mutation). Members of the existing population with greater fitness values (i.e.,

better objective function values) will have a larger chance of being chosen as

parents, which is comparable to Darwin's concept of survival of the fittest.

Because the beginning population is produced at random, the ultimate solution's

optimality cannot be guaranteed. As a result, at least one solution with the

shortest must be included in the initial population (objective function of our

problem) is included applying (select, cross-over and mutation), to generate new

population and save the best solution in every generation. The best one from

saved solutions becomes GA solution [43]. A solution's fitness value is a vector

that represents the function values. A parent is generated by selecting the best

solutions from the current population. Then, in each generation, solutions with

high fitness values in each population are chosen and recombined to create a

new offspring after applying the genetic operators for each new offspring we get

a new population. It's worth noting that the mutation operation, for example, is

based on the pairwise swapping of two tasks in the relevant sequence. There are

several applications of Genetic Algorithms (GA) have been widely applied to

various fields since 1975. They are applied to business, scientific, and

engineering areas including:

(Optimization of complex function system Classifier system, Machine

learning, Pattern recognition, Error diagnoses, Scheduling, Partitioning objects

and graphs, Self-adapting system, Clustering, design and Process control).

Researchers have showed that (GA) have been used in a wide variety of

Chapter Two Multi Criteria Scheduling Problem

23

optimization tasks, including numerical optimization and such combinatorial

optimization problem as shop–job scheduling [44].

2.5.2 Basic Stricture of Genetic Algorithm

 The following are the main components of a genetic algorithm [45]:

1. Encoding of the solution

 Solutions are represented on the chromosome through a chromosomal

representation (solution encoding).The natural permutation form of a solution

for the machine schedule problem is a permutation of the integers 1,...,n, which

describes the processing order of n jobs. A scheduling solution, or the natural

permutation representation of a solution, is used to represent each chromosome.

2. Initial Population

 The first population of chromosomes is created (initial population). The

initial population of chromosomes is formed using scheduling heuristic

dispatching rules (heuristics methods), combined with random methods, in order

to approximate an ideal solution as closely as feasible.

 3. Fitness (evaluation)

The objective function is used to determine chromosomal fitness (fitness).

Each chromosome is examined and its fitness is calculated for each chromosome

when a population is produced. Finally, a fitness value is assigned to each

chromosome based on the population size.

4. Selection

 Natural selection of some chromosomes occurs when chromosomes

(parents) are picked from the population for combining to form new

Chapter Two Multi Criteria Scheduling Problem

24

chromosomes (children) using selection procedures (typically based on fitness

value).

 5. Genetic Operators

Crossover and mutation operators are genetic operators that are applied to

chromosomes with the goal of creating new members, i.e. offspring, in the

population by crossing the genes of two chromosomes (crossover operators) or

changing the genes of one chromosome (mutation operators):

a) Crossover

The role of a crossover operator is to combine elements from two parent

chromosomes to generate one or more child chromosomes.

 b) Mutation

A mutation operator's job is to ensure that a population's diversity is

maintained so that other operators can continue to work.

 6. Substitute

The natural selection of population members who will survive

(replacement) is based on elitism. That is, to preserve the existing population's

best chromosomes and their progeny. They'll build a new population to ensure

the following generation's survival.

7. Parameter Selection

Natural population convergence that is improved globally at each stage of

the algorithm. For determining appropriate parameter values such as population,

size crossover, and mutation.

The design of the foregoing components, as well as the selection of

factors like as population size, probability of genetic operators (i.e., crossover

Chapter Two Multi Criteria Scheduling Problem

25

and mutation), and the number of generations, all influence the performance of a

(GA). The following steps give us the outline of (GA):

 Figure (2-4) Genetic algorithm

The following cycle also give us the outline of (GA)

 Figure (2-5) Genetic algorithm cycle

 Yes

 No

Save the best

solution is found

yet

New population

Mutation

Selection

Evaluation

The best solution found

is the GA solution

Initial population

Stopping

condition

Cross-over

 1. the beginning: make the first population

 this population's worth

 As a (GA) solution, save the best element from this population.

2. while the halting condition is not met, choose a good solution (parents)

Using genetic operators, create a new population from the existing population

(crossover and mutation) this population's worth. If you discover a new best

individual element, save it as a (GA) solution.

3. end while

Chapter Two Multi Criteria Scheduling Problem

26

2.6.1 Initial population

 The initial population can be generated at random or can be constructed

by using problem-specific knowledge. Chen et al.[46] used specific construction

heuristics for the flow shop problem to build their first population. They claim

that a good initial population increases the efficiency of GA. Delia Croce et al.

[47] select the solution for the initial population at random, but in order to speed

up convergence, propose to choose an initial population partially produced with

some quick heuristic. Reeves [48] compares the performance of GA with a

completely random initial population and a population where one (or more)

individual is obtained with a good heuristics rule and the remaining ones are

generated randomly. The procedure with the specific-element in its initial

population appears to arrive at its final solution more quickly, with no observed

deterioration in solution quality. Inserting a high-fitness chromosome into the

initial population is called (seeding) the success of the strategy is dependent on

the availability of good starting solution; the large variation in the population

size (m), used by different researches, ranging from a size of 20 Lee and Kim

[16] to300 Delia Croce et al. [47]. Nordstrom and Tufekci experiment with

different sizes concluded that increasing the population size seems to improve

the quality of the solution. Large population does not show any significant

improvement in the rate of convergence. Conversely, a population size of 20

seems to be too small, because it runs with this size yield somewhat poorer

performance [49].

2.6.2 Selection

 Selections to choose good candidate solutions from current population

for the next generation i.e.(for generate the next population). The number of

these candidate solutions (k) is controlled (determined) according to the

population size (m), which is selected in the initial steps of (GA). Lee and Kim,

Chapter Two Multi Criteria Scheduling Problem

27

[16] compare the (s)-best reproduction operator with roulette wheel selection.

The (s)-best scheme requires less computation time, but the quality of the

solutions obtained with roulette wheel selection is better.

2.6.3 Genetic Operators

a) Crossover

 The crossover serves to exchange information between chromosomes.

Thus usually results in a useful combination of partial solutions on other

chromosomes, and it speeds up the search process early on in the generation.

However, the process of transferring gene information may result in some genes

having redundant or missing properties. The crossover may result in an infeasible

solution. Such events are most common in chromosomes that have been

permuted. The reproduction in its first form is based on rank ordering. The first

parent for the crossover is selected at random from among the best (s)

individuals, where (s) is a parameter. The second parent is selected at a random

from the rest of the population. This reproduction operator increases the

greediness of the GA [49].

 The classical 1-point crossover is used by Lee and Kim [16] and

compared with 2-point crossover. In a 2-point crossover, two crossover points are

chosen at random and the segments in between are exchanged. The results show

that 2-point crossover is slightly better, but that it also requires more computation

time. Every time a permutation representation is employed, an appropriate

crossover operator must be designed, as described in the previous paragraph.

Partially matched crossover (PMX) is such an operator. Two crossover points are

generated at random and the segments in between define a matching section. This

matching is used to affect a cross through position-by-position exchange

operations. For example, with crossover points after the 3rd and 6th element:

Chapter Two Multi Criteria Scheduling Problem

28

 Parents: Exchanging: Restoring:

P1 789|251|638 → 798|483|634 → 795|483|612 = Ch 1

P2 956|483|271 956|251|271 986|251|473 = Ch 2

In this example, the mapping is 2 ↔ 4, 5 ↔ 8 and 1 ↔ 3. The sections are

swapped between the two crossover points. The elements 8, 3 and 4 outside the

section are substituted according to the matching to restore feasibility in the first

child. The elements 5, 2, and 1 are replaced in the second child. PMX is

mentioned in a number of articles, including Chen et al. [46].

Delia Croce et al. [47] use linear order crossover (LOX). This operator

chooses two random crossover points. The parts from parent 1's cross section are

deleted from parent 2, leaving some "holes" (marked with a '.'). The holes are

moved inwards from the extremities until they reach the cross section. The

parent 1 cross section is then swapped with the parent 2 cross section. The other

child is obtained in a similar manner.

 Parents: Holes Sliding Exchanging

P1 798|251|634 79.|251|6.. 792|…|516 792|483|516 Ch 1

P2 956|483|271 9.6|483|.7. 964|…|837 964|251|837 Ch 2

LOX prefers to honor relative positions between elements and, to the

extent possible, absolute places in the string. For example, the ordering of the

first cross section (2,5,1) is completely destroyed in the first offspring by PMX.

In the first offspring produced by LOX, the relative order, 2 before 5 and 1 and 5

before 1, is preserved.

Other researches resolve conflicts (a child in which some elements appear

more than once) in a random fashion. Reeves [48] also experiments with

random choice to restore feasibility. But he reports that disruption in the

offspring seems to be excessive. Therefore, he used the following 1-point

Chapter Two Multi Criteria Scheduling Problem

29

crossover: One crossover point is generated randomly. A child is composed of

the subsections before the crossover point of the parent and filled up taking in

order each "legitimate" element from the order parent. This 1-point crossover,

denoted by LEGX.

 Parents Children

 7982|51634 7982|56431

 9564|83271 9564|78213

There is another cross over scheme: (homogeneous mixture crossover)

HMX [41] this is determined by uniformly mixing the two parents by creating a

set (m) of genes, with the odd position from the first parent and the even

position from the second parent. Then, since we read the set (m) from the left,

we keep the gene j if it does not exist in the child ch1 and put (0) in (m), else we

keep the gene j in the second child ch2 and put (1) in (m), until the set (m) genes

are exhausted. This method also results in the birth of two new offspring.

 Parent Mixture Child

 P1= 798251634 799586245813623741 Ch1 = 795862413

 P2= 956483271 001000001100111111 Ch2 = 958623741

The rationale for this crossover is that it keeps the absolute positions of

one parent while still preserving the relative locations of the other parent's

children. However, after a number of generations, the population has converged

and crossover alone cannot improve the population anymore. A diversifying

component is necessary which can be offered by mutation.

Our crossover (QMX) we chose the 1
st
 (crossover point at the end of)

quart of parent no.1 and at the beginning of last quart of parent number 2. The

jobs in the 1
st
 quart of parent number 1. are deleted from parent 2. and put them

Chapter Two Multi Criteria Scheduling Problem

30

in start of p2 and called the resulting sequence child no. 1; by same meaning we

remove the jobs in the last quart of p2 from p1 and then put them in the last of

p1 and called the new sequence child 2; for example:

P1=13|245876 → 1
st

quart of p1 =[1 3]

P2= 486713|52 → last quart of p2 =[5 2]

→ P1= 13…4…876

→ P2= 4867… … 52

→ ch1= 13486752

→ ch2= 13487652

b) Mutation

 Syswerda introduced a number of mutation operators in scheduling study [49].

Two elements are chosen at random in this operator. Order-mutation: swaps

these two items around. The second element is placed before the first in a

position-mutation. The order-mutation method outperforms the position-

mutation method. Other studies employ the same techniques but refer to them by

more traditional terms, such as "swap" and "shifting" in neighborhood search

approaches. Chen et al. [46] change the order of the two elements. Reeves [48]

conducts certain tests with both operators. "Shift" appears to be preferable to

"swap," thus "shift" is used in his final version.

Tate and Smith [50] use another form for mutation. They pick two

random points in a string and reorder all elements within the substring confined

by the two chosen elements.

 Before After

 7 9|8 2 5 1|6 3 4 → 7 9|1 5 2 8|6 3 4

Chapter Two Multi Criteria Scheduling Problem

31

2.6.4 Termination

 Classically, When a certain number of generations (or iterations) have

been completed, the method comes to an end. For example, Chen et al. [46]

observe that the solutions become stable after twenty generations; therefore,

they use 20 generations. Because of this fixed number of generations, it is

possible that some generations at the end of the process are superfluous. To

avoid this, the procedure can be terminated when the best solution in a

population is not better than the previous population for a number of iterations.

Lee and Kim [16] used this termination condition. There are other stopping

criteria which terminate the procedure when the objective function values for the

best and worst individuals in the population are equal [49]. The algorithm of Lee

and Kim [16] stop when the improvement of the average fitness value in one

generation is less than 0.01% of the average fitness value in the preceding

generation.

2.7 Some applied examples of Multicriteria problems [26].

2.7.1 Some examples

 Several criteria are involved in many scheduling challenges in the

production domain. There are various works in the literature that deal with a

category of difficulties that are ideally suited to a situation: the requirement to

generate “Just-in-Time” products. This requirement translates into two wishes:

the first is to avoid delivering late to the client, and the second is to avoid storing

finished goods. As a result, generating "Just-in-Time" is a compromise between

producing somewhat late and not too early. In the literature, there are numerous

definitions of "Just-in-Time" scheduling. We now give a set of scheduling

challenges that relate to real-world scenarios, regardless of their application

field.

Chapter Two Multi Criteria Scheduling Problem

32

2.7.2 Chemical and electroplating industries

This category of problems returns us to the Hoist Scheduling Problem in

the literature. A limited number of chemical-filled tanks are provided for the

galvanization treatment of items. The arrival of items in the shop follows a

cyclic pattern. These objects are transported from one thank to the next by a

transportation robot (or a group of robots) that is normally suspended above the

tanks. A variable of the problem is the processing time, or soaking time, of

things in the tanks. Indeed, the chemical engineers specify a minimum and

maximum soaking time for each soaking, allowing the analyst free to determine

the ideal times. The primary goal is to find a cycle time that is as short as

possible, i.e. a minimum value for the makespan requirement. Nonetheless, two

aspects compel us to examine this issue from a Multicriteria perspective. To

begin with, actual experience shows that the timing of transportation robot

movement (handling and placing of things into the tanks) is the most

challenging component to determine in order to efficiently reduce cycle time.

Following that, for the majority of the tanks (and hence the chemical baths),

observing the minimal soaking duration is the only thing that matters. In

actuality, we can sometimes go above the maximum soaking time if it helps us

better regulate the robots' movements. When minimizing cycle time and, for

example, a weighted total of overtaking the soaking times relative to the

permissible maximum soaking times, the problem becomes bi-criteria.

2.7.3 Steel hot rolling mill industry

 The difficulty with steel hot rolling mills is that they produce steel coils

from steel slabs. The shop can be divided into two sections in this problem: a

large slab yard where steel slabs are stacked awaiting processing by the rolling

mill, and the rolling mill in itself. Each slab has its own unique properties and

can be used to treat a variety of steel coils. When a slab is chosen to be

Chapter Two Multi Criteria Scheduling Problem

33

processed, it is hauled to the rolling mill by cranes and placed in a furnace where

it is heated to a high temperature. After leaving the furnace, the hot steel slab is

rolled through a series of rolls under high pressure to produce the desired width,

thickness, and hardness for the steel coil. It's worth noting that each shift of

processed orders has an ideal sequencing form connected with it, which takes

into account additional constraints such as the furnace and the fact that we can't

change its temperature as much as we'd like. One of the planner's goals is to

reduce pressure setting variations between two consecutively generated coils

because this might have a significant impact on their quality. Furthermore,

because the rolls come into touch with hot steel, they quickly wear out and must

be replaced. As a result, coil production is scheduled in shifts of a few hours.

There are also a few other limits to consider. The goal is to sequence the steel

coils in such a way that the value of the coils rolled in the sequence is

maximized, changes in characteristics between subsequent coils are minimized,

non-essential crane movements are minimized, and departure from the optimum

sequencing shape is minimized.

2.7.4 Car assembly

 Subcontractors face multicriteria scheduling challenges as a result of car

production lines. This is especially true when it comes to car seats. The

automobile manufacturer and the car assembler are in sync, and a vehicle's

manufacturing line sequence automatically instructs the manufacturer to produce

seats. This establishes a deadline for their delivery. This is a Just-in-Time

scheduling issue since early creation of a seat incurs additional storage expenses

for the assembler (higher than storage costs of an engine). Late seat deliveries,

on the other hand, cause the assembly process to come to a standstill. The car in

question must therefore be moved to the head of the line, resulting in increased

production costs.

ChapterThree

Minimizing Total Completion Time with

Total Tardiness and Maximum Earliness

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

34

3.1 Formulation of the Problem

 A set of n independent jobs N=}1,2,...,n{ are available for processing at

’time zero, each job j (j=1,2,...,n) is to be processed without interruption on a single

machine that can be handle only one job at a time, requires processing time Pj and

due date dj. Completion time is calculated based on a specified job schedule δ, Cδ(j)

= ∑ p
j
i=1 δ(i) , total tardiness ∑ Tn

j=1 δ(j) , where Tδ(j) = max }Cδ(j) - dδ(j) ,0{ and

maximum earliness Emax (δ) = max} Eδ(1), Eδ(2),…, Eδ(n){ can be computed where

Eδ(j) = max } dδ(j) - Cδ(j) ,0{. The aim is to organize the jobs so that they can be

completed in a timely manner objective function of three criteria ∑ Cn
j=1 j + ∑ Tn

j=1 j +

Emax is minimized. This problem is NP-hard since the ∑ Tn
j=1 j is NP-hard.

This problem is denoted by the letter (P), and it can be described as follows:

Z= minδS} ∑ Cn
j=1 δ(j) + ∑ Tn

j=1 δ(j) + Emax(δ){

s.t.

Cδ(1) = pδ(1)

Cδ(j+1) = Cδ(j) + pδ(j+1) j=1,2,…,n-1

Cδ(j) ≥ 0

Tδ(j) ≥ Cδ(j) - dδ(j) j=1,2,…,n …(p)

Tδ(j) ≥ 0

Eδ(j) ≥ dδ(j) - Cδ(j) j=1,2,…,n

 Eδ(j) ≥ 0

Where S denotes the set of all schedules.

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

35

3.2 An Application of the Branch and Bound (BAB) Algorithm for

the Problem (P)

The initial upper bound is determined by the specific problem at the start of

the solution process. The shortest processing time (SPT) rule, which is

sequencing’the jobs in non-decreasing order of their processing time (Pj), j=1,2,...,n,

is obtained by the heuristic method proposed and applied once at the root node of

the (BAB) search tree to find the upper bound (UB) on the minimum value of

(∑ Cn
j=1 j + ∑ Tn

j=1 j + Emax).

To calculate a lower bound (LB) for each node, let δ be the sequencing jobs

and δَ be the un sequencing jobs, hence.

LB(δ) =Exact cost of (δ) + cost of (δ).́

Where cost of δ ́ is obtained by using lower bounding procedure.

Decomposing the problem into three sub problems (SP1), (SP2) and (SP3) as

follows:

Z1= min𝛿∈𝑆{∑ C𝛿(j)
n
j=1 }

s.t. (SP1)

 C𝛿(1) = P𝛿(1)

 C𝛿(j) =C𝛿(j−1) +P𝛿(j) j=2,3,…,n

 C𝛿(j) ≥ 0

 This sub problem (SP1) is solved by (SPT) rule.

 Z2= min𝛿∈𝑆{∑ T𝛿(j)
n
j=1 }

 s.t. (SP2)

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

36

 T𝛿(j) ≥ C𝛿(j) - d𝛿(j) j=1,2,…,n

 Tδ(j) ≥ 0

This sub problem (SP2) is NP-hard.

 Z3=min
𝛿∈𝑆

 {Emax(𝛿) }

 S.t. (SP3)

 E𝛿(j) ≥ d𝛿(j) - C𝛿(j) , j=1,2,…,n

 E𝛿(j) ≥ 0

This sub problem (SP3) is solved using the minimum slack time (MST) rule,

which involves sequencing jobs in non-descending order of slack time dj-pj,

j=1,2,…,n.

 Thus, the lower bound (LB) for the problem (p) is the sum of minimum value

of the sub problems (SP1), (SP2) and (SP3). We proposed that the minimum value

for ∑ Tj is obtained by ∑ Tj (SPT) – Tmax (EDD), Where EDD is the earliest due

date value, i.e., sequencing the jobs in non-decreasing order of their due dates.

 It is clear that ∑ Tj (SPT) – Tmax (EDD) ≤ ∑ Tj

Let Z1,Z2 and Z3 be the minimumsvalues of (SP1), (SP2) and (SP3),

respectively, and use the following theorem to obtain a lower bound for (P).

Theorem (3.1) [51]:

 If Z1,Z2,Z3 and Z are the minimum objective function values of

(SP1),(SP2),(SP3) and (P) correspondingly then Z1+ Z2 +Z3 ≤ Z.

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

37

LB = Z1+ Z2 +Z3 is a lower bound (LB) for the problem (P) obtained by applying

theorem (3.1).

An example : Suppose the problem (P) has the following data:

 j 1 2 3 4

 pj 2 3 1 6

 dj 8 4 6 10

 The BAB algorithm tree to find the optimal solution for the problem (P) is as

follows:

The optimal sequence is (2,3,1,4) with the optimal value 29.

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

38

3.3 Practical Results

In the following subsections we interduce the practical results from determine the

parameters and computational and the outcome tables.

3.3.1 Deterministic the Parameters for the Algorithms

A) BAB algorithm

 we chose the forward branching technique as we mention in 1.2.2, and for the

stopping criteria the algorithm will stop after fix period of time specially after (1800

second).

B) DM algorithm

we chose the swap method to generate new solution and for the stopping criteria the

algorithm will stop after fix number of iterations here we chose (30,000) or a fix

period of time specially after (600 second).

C) SA algorithm

we chose the swap method to generate new solution and for the stopping criteria

We employ a predetermined number (30,000 in this thesis) of generated solutions as

a stopping criterion for all heuristics because we need to be unbiased, or a fix period

of time specially after (600 second). And we ascertain on the basis of the initial

temperature T=10.

D) GA algorithm

i) Initial population generation

 Reeves [25] compares the performance of GA with a completely random

initial population and a population where one (or more) individual is obtained with

a good heuristic and the remaining ones are generated randomly. The procedure

with the specific-element in its initial population appears to arrive at its final

solution more quickly. We use the above technique for our problem, and then we

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

39

construct the initial population by using some individual solutions found by some

good known sequence like (SPT, EDD, MST and Lowler).

ii) Selection

 Selections to choose good solutions from current population. The number of

this selected solutions (k) is controlled (determined) according to the population

size (m), moreover the population size (m) can be found by these number of

selected solutions (k), as follows:

 𝒎 = 𝟐𝒌𝟐 + 𝒒 , where 2𝑘2 solutions come from the crossover operation, and the

𝑞 solutions generated randomly to escape from the local optimum, these number of

random solutions add at each iteration, the number 𝑞 represent approximately 10%

from the hole population size m, in this way we get the following table in which we

list the population size (m) for some (k) selected candidate solutions and the

number of random generated solutions:

k 5 6 7 10

q 10 8 12 20

m 60 80 110 220

 iii) Genetic operator

 Cross over: Among the crossover rules that introduced in 2.6.3 {PMX, LOX,

LEGX, HMX, QMX} we chose the our cross over (QMX) since it gives the best

influence of others rules.

 Mutation: We chose (swap mutation), or (Order-mutation) since it performs better

than position-mutation, as we see after test them by multiple runs on several

examples.

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

40

iv) Population size with iterations and stopping condition

 The efficiency of (GA) is dependent mainly on the (population size and

stopping condition) parameters, since both of them are determine the speed of (GA)

and the convergent to nearest optimal solution, so we should be determined them in

more precisely. The most important question here is (how to determine these

values?). We suggested that: the populating size (m) is chosen from the set A= {60,

80, 110, 220}, as we mention the range from a size of (20 to 300), and the number

of iterations is chosen from the set B= {50, 100, 250, 500}. Then for each value of

(A) solve same example along all values of (B), in this way we will have (4x4)

values matrix and (4x4) times matrix for each example we solve it. So, we chose

population size = 80 and iteration number =100; since we note that there is no good

improve ness by increasing the population size and (or) iterations, while it

consumes more time. For stopping condition, in this study we shall terminate the

GA cycle after a fix number of generation (100 as we mention above) or after a fix

period of time (600 second as the algorithms that used in this work).

3.3.2 Computational Results

 The BAB algorithm and local search algorithms are put to the test by coding

them in MATLAB R2019b and running them on a computer. Test problems are

generated as follows: for each job j, an integer processing time pj is generated from

the discrete uniform distribution [1,10]. Also, for each job j, an integer due date is

generated from the discrete uniform distribution [P(1-TF-RDD/2), P(1-

TF+RDD/2)], where P= ∑ pj

n
j=1 depending on the relative range of due date (RDD)

and on the average tardiness factor (TF). The values 0.2,0.4,0.6,0.8,1.0 are taken

into account for both parameters. For each selected value of n, two problems are

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

41

generated for each of the five values of parameters producing 10 problems for each

value of n, where the number of jobs n=from 3 to 40,000 .

3.3.3 Tables of Results

 The following tables give the comparative of computational results and the

time (in seconds) for the problem (P). When a problem cannot be solved to its

optimality within the time constraint of 1800 seconds, the problem is abandoned.

Symbols we have all we need in all of these tables:

 Ex: Number of example.

 Node: Number of nodes.

 Optimal: The optimal value that is obtained by BAB algorithm.

 No.of opt.: Number of examples that catches the optimal value.

 No.of best: Number of examples that catches the best value.

 DM: The value that is obtained by descent method.

 SA: The value that is obtained by simulated annealing method.

 GA: The value that is obtained by Genetic Algorithm.

 Time: Time in seconds.

 1, if the example is solved

 Status =

 0, otherwise

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

42

Table 3-1: A comparison between the optimal solutions obtained by BAB

algorithm and the values result of local search algorithms at n=5

Local Search BAB

Time GA Time SA Time DM Status Time Node Optimal Ex n

0.339277 74 0.490253 74 0.431927 74 1 0.058544 98 74 1

5

0.15029 101 0.484132 101 0.432393 108 1 0.003252 52 101 2

0.141369 134 0.396143 134 0.42002 134 1 0.009876 307 134 3

0.145799 74 0.410846 74 0.42304 74 1 0.002755 73 74 4

0.15266 147 0.391997 147 0.378842 147 1 0.006027 195 147 5

0.140788 94 0.420832 94 0.428725 94 1 0.004961 156 94 6

0.141206 144 0.413769 144 0.414412 144 1 0.006223 196 144 7

0.150554 126 0.421714 126 0.412513 126 1 0.003537 110 126 8

0.160451 128 0.448604 128 0.443888 128 1 0.004153 132 128 9

0.136119 128 0.429997 128 0.403901 128 1 0.004861 140 128 10

 10 10 9 . No. of

optimal

Table 3-2: A comparison between the optimal solutions obtained by BAB

algorithm and the values result of local search algorithms at n=7

Local Search BAB

Time GA Time SA Time DM Status Time node Optimal Ex n

0.176869 149 0.434465 149 0.451028 149 1 0.074127 576 149 1

7

0.157082 181 0.451889 181 0.44275 181 1 0.049056 1649 181 2

0.155311 155 0.435941 155 0.448604 155 1 0.054323 1865 155 3

0.160151 319 0.436842 319 0.44135 331 1 0.215803 7296 319 4

0.158759 159 0.446451 159 0.447995 159 1 0.030626 993 159 5

0.153841 181 0.432911 181 0.424566 181 1 0.044574 1444 181 6

0.154091 163 0.429353 163 0.42765 163 1 0.029366 1013 163 7

0.183691 185 0.430049 185 0.488119 185 1 0.044981 1401 185 8

0.154093 108 0.458326 108 0.436393 108 1 0.153238 5168 108 9

0.155878 227 0.429537 227 0.441418 227 1 0.053289 1853 227 10

 10 10 9 . No.of

optimal

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

43

.Table 3-3: A comparison between the optimal solutions obtained by BAB

algorithm and the values result of local search algorithms at n=9

Local Search BAB

Time GA Time SA Time DM Status Time node Optimal Ex n

0.17119 298 0.530969 298 0.522179 300 1 0.103231 1512 298 1

9

0.168965 206 0.534949 206 0.52964 206 1 0.669483 19404 206 2

0.168887 200 0.537272 200 0.549212 200 1 1.29119 46645 200 3

0.16837 341 0.527742 341 0.576686 341 1 1.304335 47239 341 4

0.167691 196 0.535685 196 0.528663 196 1 0.461582 16954 196 5

0.167103 304 0.51874 304 0.538602 304 1 0.726086 24716 304 6

0.168946 140 0.526103 140 0.534924 140 1 0.500476 16888 140 7

0.16809 378 0.526531 378 0.527394 378 1 2.8047 98906 378 8

0.165107 322 0.511782 322 0.500353 322 1 0.743506 27287 322 9

0.166214 301 0.518089 301 0.520649 301 1 0.829983 30011 301 10

 10 10 9 . No. of

optimal

In table3-1,2,3 the number of examples that gives local search values equal to the

optimal value is 9 for DM, 10 for SA and 10 for GA when n =5 , n=7 and n =9

Table 3-4: A comparison between the optimal solutions obtained by BAB

algorithm and the values result of local search algorithms at n=11

Local Search BAB

Time GA Time SA Time DM Status Time Node 0ptimal Ex n

0.193609 380 0.56491 380 0.561954 383 1 25.53819 862639 380 1

11

0.18624 614 0.565943 618 0.555486 627 1 146.780577 4883141 614 2

0.183437 436 0.60058 436 0.58563 437 1 34.5071715 1138123 436 3

0.189434 340 0.558479 340 0.561673 346 1 7.0207728 225082 340 4

0.179975 393 0.558525 393 0.541898 393 1 19.4370768 666300 393 5

0.233818 528 0.555971 528 0.555718 528 1 8.5266774 284273 528 6

0.183895 451 0.652591 451 0.588117 452 1 22.042973 722008 451 7

0.186993 284 0.557501 284 0.565228 284 1 13.8482672 483145 284 8

0.184799 478 0.55208 478 0.565022 478 1 25.8682167 846894 478 9

0.184909 588 0.549853 588 0.569821 588 1 103.426301 3435594 588 10

 9 9 5 . No. of

optimal

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

44

Table 3-5: A comparison between the optimal solutions obtained by BAB

algorithm and the values result of local search algorithms at n=13

Local Search BAB

Time GA Time SA Time DM Status Time Node 0ptimal Ex n

0.2453 793 0.669855 799 0.72278 797 1 1329.71367 43497668 792 1

13

0.201711 569 0.61263 569 0.575887 570 1 774.251406 25103067 569 2

0.246121 485 0.579348 485 0.6511 483 1 733.735107 24079250 483 3

0.248464 490 0.590707 491 0.625585 490 1 342.161331 9327944 490 4

0.247236 645 0.698971 649 0.706026 645 0 1800.00002 41447845 645 5

0.198438 689 0.699526 690 0.664823 690 0 1800.00003 40341289 689 6

0.195141 725 0.694032 729 0.678124 725 0 1800.00011 40336942 725 7

0.244738 586 0.589377 588 0.673539 586 1 940.108954 20875539 586 8

0.245802 485 0.697011 486 0.695372 485 1 876.02978 20710738 485 9

0.247795 846 0.706807 851 0.725083 846 0 1800.00009 41276248 846 10

 6 2 2 . No. of

optimal

 Table 3-6: The values result of local search algorithms at n=100

Ex Best DM Time SA Time GA Time

 1 28207 28260 1.842397 28778 1.856365 28207 1.729882

 2 31853 32315 1.974563 32872 2.04155 31853 1.993012

 3 32895 33109 1.926219 33791 2.516388 32895 2.018078

 4 25340 25486 2.085834 26146 1.890639 25340 1.666724

 5 26423 26439 1.922907 27173 1.805007 26423 1.684188

 6 33295 33295 1.747778 33380 1.768575 33306 1.625732

 7 33454 33484 2.086676 33610 1.73712 33460 2.485722

 8 32158 32329 1.853215 32797 1.093407 32158 1.622862

 9 29264 29396 2.168188 29738 1.151685 29264 1.651836

 10 28352 28389 2.153944 28681 1.804689 28352 2.235184

 No. of best 2 0 8

In this table, the number of examples that gives the best known solution yet is 2 for

DM, 0 for SA and 8 for GA.

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

45

Table 3-7: The values result of local search algorithms at n=500

Ex Best DM Time SA Time GA Time

1 714129 714129 8.0811966 721116 7.42512 715217 33.567855

2 658590 660702 9.442675 673628 8.334985 658590 31.376931

3 752400 752400 8.6926941 757187 7.284213 753253 32.96676

4 737029 737029 9.1847774 746586 8.450665 737878 31.50552

5 675646 675646 7.2728892 684939 7.187699 678507 34.525774

6 735378 735378 7.5283349 740941 7.185011 736329 35.142774

7 749799 749799 7.1421142 754688 7.104844 751863 29.485768

8 759633 759663 12.582026 764393 8.055614 761132 35.992534

9 889358 889358 8.2353456 890449 8.127139 889899 35.726727

10 932929 932929 8.053281 932948 8.207121 932938 33.884866

 No.of best 9 0 1

 Table 3-8: The values result of local search algorithms at n=1000

Ex Best DM Time SA Time GA Time

1 2553790 2572352 15.882113 2578112 16.374763 2553790 128.369943

2 2946110 2951049 15.638138 2953360 15.594807 2946110 130.81592

3 2991605 2996568 15.91777 2999152 16.146398 2991605 132.545383

4 2838114 2842095 16.198844 2844309 16.044214 2838114 123.581505

5 2896048 2905992 14.980914 2910830 15.349176 28960448 123.017859

6 3173478 3174271 14.418465 3175709 14.149838 3173478 128.410823

7 3484831 3485135 15.917629 3486448 14.154318 3484831 130.947455

8 2886778 2895780 14.918354 2900328 14.784146 2886778 123.149516

9 3372625 3374208 14.817342 3376331 14.878303 3372625 120.304961

10 3216306 3217585 13.767239 3219015 13.988947 3216306 115.164895

 No. of best 0 0 10

 Table 3-9: The values result of local search algorithms at n=5000

Ex Best DM Time SA Time GA Time

1 73524007 73536677 79.942571 73536865 71.185332 73524007 605.118035

2 63207491 63255141 75.938803 63255660 76.811952 63207491 612.660498

3 66903616 67113370 76.183674 67113824 78.896933 66903616 618.602769

4 79680417 79686076 75.849555 79686221 75.530779 79680417 615.510455

5 67804848 68036332 76.48351 68036831 77.186682 67804848 615.643608

6 70477608 70491804 77.321727 70492253 77.91059 70477608 606.714346

7 73442537 73448819 74.704688 73449028 74.50419 73442537 622.650479

8 91175307 91175790 61.24575 91175828 77.452048 91175307 616.703271

9 93941993 93941993 59.54845 93941995 71.766329 93941994 611.5997935

10 76716103 76721985 60.44667 76722261 74.890752 76716103 604.545843

 No. of best 0 0 10

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

46

Table 3-10: The values result of local search algorithms at n=10000

Ex Best DM Time SA Time

 1 289606034 289606034 155.2902 289606135 147.3921

 2 273653864 273653864 153.0772 273653987 145.3847

 3 285225751 285225751 154.83 285225807 147.4262

 4 284408782 284408782 162.3384 284408938 151.158

 5 276890195 276890195 154.9541 276890298 162.6316

 6 336633779 336633779 137.8737 336633828 144.5711

 7 321570865 321570865 143.1081 321570917 135.8353

 8 346921027 346921027 146.2184 346921063 145.0729

 9 299196329 299196329 145.0793 299196441 147.0557

 10 305059249 305059249 147.2527 305059347 146.8354

 No.of best 10 0

In this table, the number of examples that gives the best solution is 10 for DM and 0

for SA.

Table 3-11: The values result of local search algorithms at n=20000

Ex Best DM Time SA Time

1 1198810298 1198810298 237.7489 1198810352 240.5755

2 1166318774 1166318774 240.2549 1166318816 235.574

3 1035314962 1035314962 242.8797 1035315030 239.9499

4 1166864162 1166864162 238.9088 1166864226 240.2091

5 1234855812 1234855812 239.3137 1234855850 236.8713

6 1170262797 1170262797 239.1409 1170262828 237.8809

7 1146405539 1146405539 240.5716 1146405586 241.4909

8 1246434331 1246434331 237.116 1246434352 235.1815

9 1366225692 1366225692 235.0879 1366225709 233.0021

10 1545672927 1545672927 229.7283 154672927 228.244

 No.of best 10 1

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

47

Table 3-12: The values result of local search algorithms at n=30000

Ex Best DM Time SA Time

1 2316579635 2316579635 368.9691 2316579694 365.4173

2 2371616071 2371616071 7000.079 2371616117 367.3791

3 2754714509 2754714509 493.5022 2754714539 492.3983

4 2912393595 2912393595 477.308 2912393611 472.8284

5 2568730859 2568741545 10916.23 2568730859 1637.515

6 3082704178 3082704178 386.4808 3082704201 600.0024

7 3073066706 3073066706 372.3755 3073066715 371.7001

8 2838453378 2838453378 363.0306 2838453387 356.1615

9 2906051952 2906051952 470.5902 2906051976 356.743

10 3165132308 3165132308 481.673 3165132313 468.6973

 No. of best 9 1

 Table 3-13: The values result of local search algorithms at n=40000

Ex Best DM Time SA Time

1 4517342015 4517342015 468.3425 4517342036 463.6928

2 4342910570 4342910570 483.8663 4342910604 468.9732

3 4697900554 4697900554 463.0457 4697900560 466.0637

4 4239059324 4239059324 480.22 4239059359 467.2866

5 5175147897 5175147897 466.3659 5175147903 461.4844

6 4470139888 4470139888 505.815 4470139898 465.3543

7 4819997499 4819997499 463.9291 4819997510 466.0675

8 4717213474 4717213474 477.5863 4717213490 461.3611

9 5441662736 5441662736 460.291 5441662746 459.9377

10 5058154973 5058154973 463.9767 5048154987 460.7368

 No. of best 10 0

Chapter Three Minimizing Total Completion Time with Total

Tardiness and Maximum Earliness

48

3.4 Conclusions and Future Work

3.4.1 Conclusions

 This thesis proposes an effective branch and bound (BAB) algorithm to

find the best solution to the problem of reducing a ∑ Cj
n
j=1 +∑ Tj

n
j=1 + Emax. On a

large number of test problems, the (BAB) method is used. The BAB algorithm is

efficient for n ∈ {5,7,9,11,13} , as evidenced by the computed values. Finding

approximation solutions for the problem can also be achieved by applying

simulated annealing (SA) , local search algorithms descent method (DM) and

Genetic algorithm (GA). On a broad set of test problems, a computational

experiment for local search algorithms is presented. The Genetic algorithm (GA) is

more effective for problem of size n= 100,500,1000,5000. The descent method

(DM) is much more successful for problems of large size

n=10000,20000,30000,40000. Where the computational time of DM is close to that

of SA. This is the most important we can derive from our computational results.

3.4.2 Future Work

 An interesting future research topic would include the development of the lower

bound (LB), the improvement of upper bound (UB) by using the results of local

search algorithms in order to improve the efficiency of BAB algorithm and

experimentation with Tabu Search (TS) algorithms, and use multi-start SA

algorithm.

References

References

49

References

[1] Pindeo, M., "Scheduling; Theory; Algorithms and Systems", Prentice Hill, Inc.,

Englewood diffs, New Jersey 2
nd

 edition, (2016).

 [2] Al- Nuaimi A. A. M. , "Local search algorithms for multiobjective scheduling

problem", Journal of AI- Rafidain University College 36: 201-217,2015.

[3] Evans G.W., "An overview at techniques for solving miltiobjective

Mathematical programs", management science 30, 1268-1282, (1984).

[4] Emmons H., "A note on a scheduling problem with dual criteria", Naval

Research Logis. Quarterly, 22,515-516,(1975).

[5] Lawler, E.L., "Optimal sequencing of a single machine subject to precedence

constraints", management science 19,544-546, (1973).

[6] Franch S. "Sequencing and Scheduling an Introduction to Mathematics of Job

Shop" , John Wiley & Sons, New York (1982).

[7] Hoogeveen H., "Single – machine bi-criteria scheduling", PhD Dissertation,

Center for mathematics and Computer science, Amsterdam. The Netherlands,

(1992).

 [8] Hoogeveen H., "Invited review of Multicriteria scheduling", European Journal

of Operational Research 167,592-623,(2005).

[9] Nager A., Jorge H., and Sunderesh H., "Multiple and bi-criteria Scheduling: A

literature survery", European Journal of Operational Research North-Holland, 81,

88-104, (1995).

References

50

[10] Van Wassenhove, L.N. and Gelders, F., "Solving a bicriteria scheduling

Problems", European Journal of Operational research, 4, 42-48, (1980).

[11] Al- Nuaimi A. A. M. , " A proposed algorithm to find efficient solutions for

Multicriteria problem", Journal of Engineering and Applied Sciences 14(2): 5547-

5549,2019.

[12] Al- Nuaimi A. A. M. , "Minimizing three hierarchically Criteria on a single

machine", Diyala Journal for pure sciences 13(1): 14-22, 2017.

[13] Al- Nuaimi A. A. M. , " An algorithm for solving three criteria scheduling

problem on a single machine", Int. J. Agricult. Stat. Sci, 14(1): 271-273, 2018.

[14] Bagchi T.P., "Multiobjective Scheduling by genetic algorithm", Kluwer

Academic publisher, (1999).

 [15] Hoogeveen, J.A., "Single machine scheduling to minimize a function of Two

or three maximum cost criteria", Journal of Algorithms 21,415-433, (1996b).

[16] Lee J.K. and Kim Y.D., "Search heuristic for resource constrained project

scheduling", Journal of the operation research society 47, 678-689 (1996).

[17] Lenstra,J.K., Rinnooy Kan A.H. G and Brucker P., "Complexity of Machine

scheduling problems", Annals of operation research 1,343-362,(1977).

[18] Smith W. E., "Various Optimizers for Single Stage Production", Naval

Research Logistics Quarter 3, 59-66, (1956).

[19] Jackson J.R., "Scheduling a production line to minimize maximum tardiness"

Research Report 43 management science, Res. Project, University of California,

Loss Angles, CA, (1955).

References

51

[20] Kanet J.J., "Minimizing the Average Deviation of jobs Completion Time

about a Common Due Dates", Naval Res. Logistics Quarter 28,643-65 (1981).

[21] Mahmood A.A, "Solution procedures for scheduling job families with setup

and due dates" M.S.c. thesis Univ. of Al-Mustansiriyah, College of Science, Dep.

of Mathematics (2001).

[22] Conway R.W., Maxwell W.L., and Miller L.W. "Theory of Scheduling

Addison ", Wesley, reading, Mass (1967).

[23] Baker K.R., and Scharge LE., "Finding an optimal sequence by dynamic

programming: an execution to precedence-related tasks ", European journal of

operational res. 26,111-120, (1978).

[24] Lomnicki Z. A, op.cit, "A branch-and-bound algorithm for the exact solution

of the three-machine scheduling problem", oper.Res.Quart.16,89-100, (1965).

[25] Reeves C.R. "Modern Heuristic techniques for combinatorial Problems".

John Wiley and Sons, Inc, New York, (1993).

[26] Tkindt V. and J.-C. Billaut, " Multicriteria scheduling theory, models and

Algorithms", Springer, Berlin. 35 (2006) 143-163.

[27] Lee C.V and Vairaktarakis GL., "Complexity of single machine Hierarchical

scheduling: a survey complexity in numerical Optimization", 19,269-298, world

scientific (1993).

[28] Al-Assaf S.S.,"Solving multiple objectives scheduling problems", M.Sc. thesis

Univ. of Al- Mustansiriyah, College of Science, Dep. of Mathematics (2007).

[29] Hoogeveen J.A., "Minimizing maximum promptness and maximum Lateness

on a single machine", Mathematics of operation research. 21,100-114, (1996a).

References

52

[30] Garey, M.R., Tarjan, R.E., Wilfong. G.T., " One-processor Scheduling with

symmetric earliness and tardiness penalties". Mathematics of Operations Research

13,330-348 (1988).

[31] Verma, S., Dessouky, M., "Single- machine scheduling of unit-time jobs with

earliness and tardiness penalties". Mathematics of Operations Research 23,930-

943, (1998).

[32] Fry T.D., Keong Leong, G., "Single machine scheduling": A Comparison of

two solution procedures", Omega 15,277-282,(1987).

[33] Kim, Y.-D., Yano, C.A., "Minimizing mean tardiness and earliness in single

machine scheduling problems with unequal due dates", Naval Research Logistics

41,913-933,(1994).

[34] Hoogeveen J.A., and Van de Velde, S.L., "A branch-bound algorithm for

Single-machine earliness-tardiness scheduling with idle time", INFORMS Journal

on Computing 8, 402-412,(1996).

[35] Sourd L., Kedad-Sidhoum F., " The one machine problem with earliness and

tardiness penalties". Journal of Scheduling 6,533-49, (2003).

[36] Bulbul L., K., Kaminsky, and P., Yano, C., "Submitted for publication.

Preemption in single machine earliness tardiness scheduling", Naval Research

Logistics, Department of IEOR, University of California at Berkeley (2005).

[37] Sourd L. Kedad-Sidhoum F., " The one machine problem with earliness and

tardiness penalties". Journal of Scheduling 6,533-49, (2003).

References

53

[38] Chen L., and Bulfin R.L., "Scheduling unit processing time jobs on a Single

machine with multiple criteria", Computers and Operations Research 17,1-7,

(1990).

[39] Hummadi L.Z., "Using Genetic algorithm to solve (NP-complete)\ problems".

M.Sc. Thesis. College of Science, University of Al- Mustansiriyah, (2005).

[40] Kirkpatrick S.,Gelatt Jr, CD., and Vecchi MP., "Optimization by simulated

annealing", Science 220,671-80,(1983).

[41] Mohammed, H. A.A. "Using Genetic and local search algorithms as a tool for

providing optimality for job scheduling", M.Sc. Thesis, College of Science,

University of Al-Mustansiriyah, (2005).

[42] Gupta J.N.D., Hennig K., Werner F., "Local search heuristics for two-stage

flow shop problems with secondary criterion", Ball stat university, Muncie,

IN43,306, USA. Pergaamon computer and operation research 29,123-149, (2002).

[43] Holland J. H. "Adaptation in Natural and Artificial Systems", Ann Arbor,

University of Michigan Press, 1975.

[44] Al-Samarii N.A.A., "Signatures verification using neural network", M.Sc.

thesis, College of Engineering, University of Al-Mustansiriyah, April-2004

[45] Liu N., Mohamed A. Abdelrahman, and Srini Ramaswamy," A Genetic

Algorithm for the Single Machine Total Weighted Tardiness Problem", Tennessee

Technological University, Cookeville, TN 38505, USA, 2003.

[46] Chen C.L., Vempati V.S., and Aljaber N., ,"An application of genetic

algorithms for flow shop problems", European Journal of operation research, 80

389-396, (1995).

References

54

[47] Delia Croce F., Tadi R. and Valta G., "A Genetic algorithm for job shop

problems", Computer and operation research, 22, 15-40 (1995).

[48] Reeves C.R., " A Genetic algorithm for flow shop sequencing", computer and

operation research, 22,5-13 (1995).

[49] Crauwels, H. " A comparative study of local search methods for one machine

sequence problem". Ph. D. thesis Katholieke University, Heverlee. Belgium

(1998).

[50] Tate D.M., and Simth A.E., "A genetic approach to the quadratic assignment

problem". Computer and operation. research. 22,73-83 (1995).

[51] Al-Nuaimi A.A.M., Optimal solution for simultaneous multicriteria problem,

Diyala Journal for pure Sciences 12(2): 18-27,2016.

مستخلصال

 أ

 المستخلص

 ثلاثتة ال قتايس . المهواحتدماكظتة علت مقتايس الجدولتة متدتد ا ال مستللة ، يتت الظرتر فتيلرسالة في هذه ا

 .Emaxوالحد الاقص للوقت المبكر Tj∑والتلخسر الكلي Cj∑المستخدمة هي وقت الاتمام الكلي

 التة لتقلست j ،j=1,2,…,n وظتاف والتقريبتي للنهدف في هتذه الدااستة الت ايجتا الجتدوم الامظتي الامثت

 .+Tj+Emax ∑ ∑Cjللدالةالمقايس الهدف متدد

 قستد. وقمظتا ااتتتقاا الللمستالة لايجا الح الامث (BAB)لح هذه المسالة نستخدم خواازمسة التقسد والتفرع

. يتت ارتراا التجتاال الحستااسة لخواازمستة (BAB)تفرع والتقسد اللاستخدامه في خواازمسة (LB)الا ن

BAB علتت مجموعتتة كبستترا متتا متتتكلا الاختبتتاا. هظتتا ترهتتر تتدواةNP لهتتذه المستتللة اه انتته لتتس متتا

 .n=13ال حلت ما الدثوا عل الح الامث اسرعة والمسللة الممكا اف

ا البحتث المحلستة لايجتا حلتوم اجهد حسااي هافت نستتخدم خواازمست مث لذلك ادلا ما البحث عا الح الا

، طريقتتة الظستت احتتث محلستتة قتتت حستتااي اقتت . تتت ت بستتز ثتتلا خواازمستتا قريبتتة متتا الحتت الامثتت متت و

(DM) والتلديا المحاكي(SA) والخواازمسة الوااثسة (GA)لهذه المسالة.

طترا الحت . تمتت متا ارت تقتس فدالستة BABم خواازمسة GAو SAو DMتت مقاانة الخواازمسا

 ساغة الاستظتارا عل كفااا الخواازمسا ، اظااً عل نتافج التجاال الحسااسة.

 .

 جمهورية العراق

 وزارة التعليم العالي والبحث العلمي

 جامعة ديالى

 كلية العلوم

 رياضياتقسم علوم ال

متعددة المقاييس لة امثليةألمسحل خوارزميات

جامعة ديالى -رسالة مقدمة إلى مجلس كلية العلوم

الرياضياتوهي جزء من متطلبات نيل شهادة الماجستير في علوم
 من قبل الطالب

 انمار صبري حسن

 2004 المستنصيريةجامعة ال كلية العلوم/ / الرياضياتبكلوريوس علوم

 إشراف

النعيمي ا.م.د عدوية علي محمود

 م 2021 ه 1442

