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Abstract 

         In this thesis, multicriteria scheduling problem on a single machine is 

considered. The three criteria are total completion time ∑Cj , total tardiness ∑Tj 

and maximum earliness Emax. 

        We aim in this study to find optimal and approximate schedule for the jobs j, 

j=1,2,…,n to minimize the multicriteria objective function  ∑Cj+∑Tj+ Emax. 

      For solving this problem, we present a branch and bound (BAB) algorithm to 

find optimal solution. We derived a lower bound (LB) to be used in a branch and 

bound (BAB) algorithm. On a vast collection of test problem, computational 

experiments for the BAB algorithm are provided. The NP-hardiness of this 

problem demonstrate that finding an optimal solution immediately is not always 

achievable and the problem is solved for n =13. As a result, rather than spending a 

lot of time searching for the best solution, we employ local search algorithms to 

uncover approximation answers that are close to the best but take less time. The 

problem is solved using three local r search algorithms: descent method (DM) , 

simulated annealing (SA) and Genetic algorithm (GA). The algorithms DM , SA 

and GA are compared with the BAB algorithm in order to evaluate effectiveness of 

the solution methods. Conclusions are formulated on the efficiency of the 

algorithms, based on findings of computational experiments. 
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Introduction 

          The scheduling problem is one of the most studied problems in  

combinatorial optimization. It can be defined as a decision making process that is 

used on a regular basis in many manufacturing and services industries. It is 

concerned with allocating resources to tasks over certain time periods with the goal 

of minimizing one or more objectives [1].  The scheduling problem is defined as 

the challenge of assigning a group of machines in a given amount of time while 

adhering to certain constraints [2].   

Real-world problems arising in various applications domains are usually 

strictly related to time [2]. 

   Due dates or deadlines are commonly used in scheduling theory to simulate 

time constraints, and the quality of schedules is calculated using these factors [2].  

Minimize or maximize F(s) = (f1(s), f2(s),...,fk(s) for multicriteria (multiple 

objective) scheduling problems, such that s∈S, where s stands for the solution, S is 

the set of feasible solutions, k is the number of objectives in the problem, and F(s) 

is the image of S in the k-objective scheduling problem. The goal of many issues is 

to determine the best arrangement of a group of discrete items that meets additional 

requirements and limitations. If the problem has many objectives, numerous 

criteria exist to assess the quality of the solution, and each of these criteria has an 

objective (min. or max.) linked to it [3]. 

      There are three types of Multicriteria problems. The first type of these 

problems consists of identifying all sequences that minimize the first objective. The 

optimal sequence for that task is picked from among those that minimize a second 

objective. The hierarchical approach [3] is the name given to this method. The 

second of these Multicriteria problems, when the criteria are weighted differently 
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an objective function can be defined as the sum of weighted functions and 

transform the problem into a single criterion scheduling problem. This approach is 

called simultaneous optimization along with the third type of Multicriteria 

problems. The third one of these multicriteria problems is going to consider both 

criteria as equally important. This problem is to find a sequence that does well on 

both objectives. Note that this optimization is called a priority optimization, is 

clearly the most difficult variant of the three approaches; if we can solve this 

problem (finding the set of pareto optimal points), then we will solve the other two 

as well. 

        For a single machine scheduling with multicriteria, Emmons [4] addressed the 

hierarchical problem of minimizing ∑ Cn
j=1 j based on the constraint that fmax is 

minimal; this problem is denoted by 1/fmax ≤ f
*
/ ∑ Cn

j=1 j, where f
*
 signifies the 

optimal solution value of the 1//fmax problem. The 1//fmax   Lawler's algorithm solves 

the issue in O(n
2
) time algorithm [5].  

The importance of multicriteria scheduling has been recognized in [6].  

Hoogeveen [7] studied a number of bi-criteria scheduling problems, he proved 

strong NP-hardness of bi-criteria problems involving ∑wjCj and Lmax. Hoogeveen 

surveyed the most notable results on multicriteria scheduling [8].  Nagar et al. [9]   

provided a questionnaire of the multiple and bi-criteria scheduling research 

involving multiple machines. Van Wassenhove and Gelders [10] proposed a 

pseudo-polynomail algorithm for finding all efficient schedules with respect to ∑Cj 

and Tmax . Al-Nuaimi [11] proposed an algorithm to find efficient solutions for 

multicriteria scheduling problem of total completion time ∑Cj with maximum late 

work (Vmax) and maximum lateness (Lmax) on a single machine. In [12] Al-Nuaimi 

presented some methods to identify the most precise and best possible solutions to 
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the three-criteria problem maximum lateness Lmax , maximum earliness Emax and 

sum of completion time ∑Cj in hierarchical case. Also, Al-Nuaimi [13] proposed 

an algorithm to solve the problem 1//F(∑Cj, ∑Tj, Lmax) to find the set of efficient 

solutions. Local search method proved that the led to significant better results than 

traditional heuristics if they are implemented carefully. Within a reasonable 

amount of time, local search algorithms can identify the best approximation 

solution [2].   

In this thesis, we look at how to schedule n jobs on a single machine while 

keeping the total cost low completion time (∑Cj) with total tardiness (∑Tj) and 

maximum earliness (Emax). 

          This thesis is organized as follows: 

Chapter one gives a description of machine scheduling problem, including 

the assumption for machines, jobs and optimality criteria. Classification and 

representation of scheduling problem are also mentioned. Chapter two considers 

basic concepts of multicriteria scheduling optimization and local search methods 

with some definitions and considers some models studied of multicriteria 

scheduling problems. In chapter three, we present the mathematical form for the 

simultaneous multicriteria problem, which is recognized NP-hard, we derive a 

good lower  bound based on objective decomposition, in order to design a branch 

and bound the problem-solving algorithm. We also present computational 

experiments for the exact solution and local search algorithms in chapter three. 
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1.1 Scheduling Problem (Definition and Classification) 

1.1.1 Machine Scheduling  

There has been a large number of researches on production scheduling 

problems since the original of mathematical formulations typically, this entails 

assigning machines to process tasks (jobs) over time in order to refine certain 

output parameters, either precisely or roughly. 

         The literature can be divided into two major categories: 

a- Deterministic scheduling research: where all problem parameters are 

considered to be well-known. 

b- Stochastic scheduling research: where at least some parameters are random 

variables. 

In deterministic scheduling research a large view is taken and multiple 

machines are often modeled. The deterministic approach is to plan the work 

through the machines over a period of time in the best possible way, given a 

specific objective to optimize. The implicit assumption here is often that a 

schedule can be executed directly as developed. 

However, several scholars have recently recognized that this unlikely 

scenario exists in many manufacturing settings, and have attempted to apply the 

deterministic approach to circumstances involving some complexity [14].   

1.1.2   Basic Scheduling Concepts  

        We begin by adding some key notations, focusing on performance 

parameters without going into details about system environments, etc. We assume 

that there are n jobs, denoted by 1,...,n, that must be scheduled on a set of 

machines that are always available from time zero onwards and can only handle 

one job at a time. 
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We only state the notation used in this study for the single machine, jobs j 

(j=1,...,n): 

    pj: This means the processing time. 

    rj:  A release date of job j, i.e. the earlier time of  which the pj of job  begin. 

    dj: This means the due date. 

    Wj: This means the weighted. 

              We can now compute for job j for a given sequence of jobs: 

1- The completion time Cj. 

2- The flow time  Fj=Cj-rj. 

3- The lateness Lj= Cj-dj. 

4- The tardiness Tj=max  } Cj -dj,0{. 

5- The earliness Ej=max} dj-Cj,0{. 

6- The unit penalty Uj=1 if Cj> dj and Uj = 0 if Cj≤ dj. 

The following performance criteria appear frequently in the literature [15].   

For a given scheduling δ we compute: 

1- Cmax (δ) = maxj (Cj) (maximumscompletion time). 

2- Emax (δ) = maxj (Ej) (maximum earliness). 

3- Lmax (δ) = maxj (Lj) (maximum lateness). 

4- Tmax(δ) =maxj (Tj) (maximum tardiness). 

5- ∑ (Wj) Cj (δ) = total (weighted) completion time. 

6- ∑ (Wj) Ej (δ) = total (weighted) earliness. 

7- ∑ (Wj) Tj (δ) = total (weighted) tardiness. 

8- ∑ (Wj) Uj (δ) = total (weighted) number of tardy jobs. 
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          All these criteria except for Emax and (∑Wj) Ej are regular, i.e., the  value of 

the objective function can not be decreased by inserting idle time into the 

schedule. 

 1.1.3  The problem classification  

A notation which is commonly used to formulate scheduling problem is 

based on three fields: α/β/γ [7]. In this notation, α describes the machine 

environment, i.e. the structure of the, 

 -Single machine or multiple machines. 

- Machines that are the same or that are different. 

The field β explains the problem's constraints as well as other processing 

conditions. Among the constraints that can exist [14], [16]:  

-Preemption allowed or not,  i.e. whether  the processing of jobs can be  

Interrupted and resumed. 

-Whether special processing conditions (release date, due date, setup times, 

etc,) specified or not, and if these are not and if these are deterministic or 

stochastic. 

-Fixed or dynamic arrival of jobs, etc. 

The criteria (γ) used to evaluate the equality of the scheduling include: 

-Minimum completion time or make span Cmax. 

-Maximum earliness Emax = max (Ej) for j=1,…,n. 

-Maximum tardiness Tmax  = max (Tj) for j = 1,…,n, etc. 
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1.1.4  A few examples of scheduling problems 

We give a few examples on three fields classification of scheduling 

problems. The 1/ri/∑Wi Ci is the problem of minimizing total weighted 

completion time on one  machine subject to non- trivial release dates. The 1//∑Wi 

Ci+Tmax is the problem of determining the best order for jobs to be processed on a 

single machine in order to minimize the amount of the overall weighted 

completion period and the maximum tardiness. 

1.1.5  Some Types of Machine Scheduling Problems 

Due to the large variety of machine scheduling problems, several 

classification schemes have been proposed based on different dimensions [17]. 

The number of available machines and how they are arranged (see figure (1-1)) is 

example of such dimension. The simplest problem is the one-machine sequencing 

problem: all jobs must be processed on a single machine, and no two jobs can be 

processed at the same time.  There are four types of scheduling issues in a work 

store [5]:   

a-Scheduling a single machine [5] 

The single machine scheduling problem entails allocating a single resource 

to a collection of jobs. This is achieved by creating a series that involves each job 

and assigning the jobs to their respective sources. Each job should have a priority, 

a ready time, a processing time, and a due date assigned to it. On the basis of this 

data and the job series, the value of the performance measure can be computed. 

This problem grows in complexity at an exponential rate as the number of jobs to 

be scheduling increases. 
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b-Flow Shop Scheduling [5] 

In each of the m machines, there are n jobs to process, i.e., each job consists of m 

steps or operations. Each job is processed in the same order through the 

processing stages, i.e., from the first to the last machine. The problem is to find 

the sequence in which the jobs should be processed so that the given objectives 

are achieved.  

c-Job Shop Scheduling [5] 

This is a general case of the flow shop scheduling problem, in which each 

job is not necessarily sequenced through the machines in the same way. As in      

a flow shop, there are n jobs with m operations each of which are predefined and 

fixed; for example, Jm/dj/Cmax denotes a work shop configuration in which all jobs 

have a due date and the aim is to minimize the maximum completion time. 

d-Scheduling of Open Shops [5] 

The open shop is a more general case of the job shop scheduling problem 

as before, there are n jobs consisting of m steps to be processed in m machines. 

Each work is sequenced differently across the machine, and determining the best 

sequences for each of the n jobs is part of the problem. And, in addition to the 

work processing schedule, the sequence of steps for each job must be decided.    
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Figure 1-1: Classification of machine Schedule Problems [17] 

Definition:  P- type problem (1.1.6) 

          The problems for which the polynomial bounded algorithm for solving this 

problem, were found. 

 Definition: NP- type problem (1.1.7) 

         The problem that haven’t a polynomial bounded algorithm to solve this 

problem. 

1.2  Solution Approaches  

1.2.1 Basic Rules and Main Results to Find Optimal Solution for p-

Type  Machine Scheduling Problem 

The common basic rules which help us in finding a solution for scheduling  

problem: 

1- Smith rule or SPT (shortest processing time) rule, that is, sequencing the jobs 

are listed in non-descending order of processing time. This rule e solves the 

problem 1//∑ Cj j [18]  more general is the SWPT rule, that is sequencing the 

Machine Schedule 
Problems 

Single stage system 

Single 
machine 

parallel 
machines 

identical 
machines 

uniform 
machines 

unrelated 
machines 

Multistage system 

Flow 
shope 

Job shope 
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jobs in non-decreasing order of their processing time to the weight ratio which 

solves the problem 1//WjCj.  

2- The earliest due date or the EDD rule, which solves the problem 1//Lmax by 

sequencing the jobs in non-decreasing order of their due dates. For the 1//Tmax  

query, this rule also minimizes Tmax  [19].   

3- The longest processing time or the LPT rule, i.e., sequencing the jobs in a 

non-increasing order of processing time [20], which minimize 

∑ Ejj  for the problem 1/Cj≤ dj/ ∑ Ej j . 

4- The minimum slack time or MST rule, that is, sequencing the jobs in non-

decreasing order of their slack times (sj=dj-pj). In a single machine 

environment with ready time set at zero, which solves  1//Emax problem [6].  

1.2.2 Mathematical Programming to Solve NP-hard Machine 

Scheduling Problems 

There are some mathematical programming techniques used to solve the 

combinatorial optimization problem, these techniques are also used for 

scheduling problems [21].   

Many scheduling problems can be formulated as a (mixed) programming 

problem; in that case, standard integer programming solution procedure can be 

used. Both Conway et al. [22], and Baker and Schrage [23] discussed integer- 

programming formulation of scheduling problems.  

Complete enumeration method generates schedules one by one, searching 

for an optimal solution. This method lists all possible schedules and then 

eliminates the non-optimal schedules from the list, leaving those, which are 

optimal. Clearly searching for an optimal schedule among all possible schedules 

using complete enumeration is not suitable even for problems of small size. 



Chapter One                                             Scheduling Problem 
 

 
8 

The dynamic programming (DP) method is an implicit enumeration 

technique that can be used to solve any optimization problem that can be solved 

by solving the derived recurrence relation for this problem [21].There are some 

difficulties for this method, one of them is the difficulty of finding a good way for 

brake down problem into stages so that a convenient computation is rather large, 

which means that the computation grows to exponential rate with increasing in 

the size of problem. 

Branch And Bound (BAB) method is a general method for solving many 

types of combinatorial optimization problem. BAB method is the most wildly 

solution technique that is used in scheduling [24]. This method is the typical 

example of the implicit enumeration approach, which can find an optimal solution 

by systematically examining subset of feasible solution. The procedure is usually 

described by means of search tree with nodes that correspond to these subset.  

From each node for a partially complete solution there grows a number of new 

branches which replaces the original one by set of new smaller problems that are 

mutually exclusive. There are two forms of branching that are commonly used: 

1- The forward branching, that is the jobs are sequenced one by one from the 

beginning. 

2- The backward branching, that is, the jobs are sequenced one by one from the 

end. 

To minimize an objective function Z, for a particular scheduling problem, 

the BAB method successively partitions the problem into subsets by using a 

branching procedure and computes bound by using a lower bounding procedure. 

These methods are used to exclude subsets that are found to be devoid of any 

optimal solution. This eventually leads to at least one optimal solution. The lower 

bound (LB) on the solution to each created sub problem is calculated using the 

bounding method. For each node we calculate a (LB) which is the cost of the 
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scheduling jobs (depending on the objective function and the cost of the 

unscheduled jobs (depending on the derived lower bound)). If this node has a 

value (LB) greater than or equal to the upper bound (UB) then this node is can 

called the upper bound is usually defined as the minimum of the values of all 

feasible solutions currently found. If branching reaches a full sequence of jobs, 

that sequence is evaluated, and if its value is less than the current upper bound 

(UB), this (UB) is reset to that value. We repeat the procedure until all nodes have 

been considered, that is, LB≥UB for all nodes in the search tree. An optimal 

solution for this problem is a feasible solution with this (LB). 

           In BAB procedure one can introduce dominance rules (if possible) to 

specify whether a node can be eliminated before computing its (LB) which reduce 

the computation time by ignoring the calculations of the dominated nodes and 

their successors. 

1.2.3 The Heuristic Method 

It's evident (from the previous section) that utilizing mathematical 

programming algorithms to tackle a particular problem could take a lot longer 

than it usually does for large problems. Indeed, even for a minor issue, there is no 

guarantee that a solution will be found immediately. Sometimes we use a 

heuristic scheduling instead of the optimal schedule, that is, we can find near 

optimal solution. Reeves [25] the heuristic technique is defined as follows: A 

heuristic which seek good (i.e., near optimal) solution at a reasonable 

computational cost without being able to guarantee either feasibility or 

optimality, or even, in many case to state how close to optimality a particular 

feasible solution. 
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1.3 Multicriteria Scheduling  

Many researchers have been working on multiple criteria scheduling with 

the majority of work being on bi-criteria scheduling. When two criteria are used 

instead of one, the problem becomes more realistic. One criterion can be chosen 

to represent the manufacturer’s concern while the other could represent 

consumer’s concern. Several studies evaluate the literature on multiple criteria 

scheduling. Nager et al.(1995) [9], and Tkindt and Billaut (1999) [26] review a 

special version of the problem, Lee and Vairaktarakis (1993) [27]  review a 

particular variant of the problem in which one criterion is fixed to its greatest 

feasible value and the other criterion is attempted to be optimized under this 

restriction. 

 Hoogeveen (1992) [7] studied a number of bi-criteria scheduling problems. 

Most real-world optimization problems have several, often conflicting objectives. 

Therefore, the optimum for a multiobjective problem is typically not a single 

solution. It is a set of solutions that trade-off between objectives. 

        There are three different sorts of problems with many criteria that can be 

detected: 

The first of these problems entails determining all sequences that minimize 

a first objective. The optimal sequence for that task is picked from among those 

that minimize a second objective. Assume we've decided on two performance 

criteria to consider, say f and g. If f is more important than g, then the approach is 

to find the optimum values with respect to criterion f, say f
*
, and choose from 

among the set of optimum schedules for f the one that performs best on g, such an 

approach is called hierarchical optimization or lexicographical optimization, 

which is denoted by Lex (f,g) in the third field of the α/β/γ notation scheme. This 

method is known as a hierarchical approach. 
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When the criteria are weighted differently, the second of these multiple 

criteria problems is an objective function that can be expressed as the sum of 

weighted functions and turns the difficulties into a single criterion scheduling 

problem. Simultaneous optimization is the name given to this method, as well as 

the third type of multiple criteria issues. Also in these multiple criteria problems, 

both criteria are going to be considered as equally important. The issue is 

determining a sequence that achieves both goals. To solve this problem, the main 

concept is that we select a subset of solutions from a larger set that contains 

efficient solutions. 

    Theorem (1.3.1) [8]  

            There is an extreme schedule that minimizes F (f,g) if the composite 

objective function F (f,g) is linear.  
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2 Multicriteria Scheduling problem 

2.1 Basic Concept of Multicriteria Scheduling  

          For several years, scheduling researchers focused on single, non-

decreasing work completion period performance metrics. More than one 

efficiency metric is of concern in most real-world scheduling applications [28].  

The three types of bi-criteria scheduling problems are as follows. Assume that 

we've chosen two success criteria to consider, say f and g [29]. 

1. In the event that output criterion, say f, is significantly more significant than 

the other, an easy strategy is to identify the optimal value with regard to 

criterion f, which is indicated by f*, and pick the one that performs the best 

on g from the set of optimum schedules for f, (hierarchical or 

lexicographical optimization ). This is represented by Lex (f, g), where the 

criterion stated first in Lex's argument is the most relevant. The primary 

criterion is f, and the secondary criterion is g. The earliest work in this field 

is Smith [18]. Work on minimizing overall completion time with no tardy 

jobs. 

Definition (2.1.1) [18]:  

          A feasible schedule for the problem 1//Lex (f, g) is one that meets the 

fundamental requirement f. 

Definition (2.1.2) [18]:  

           An optimal schedule for 1//Lex (f,g) is a feasible schedule that minimizes 

the secondary criterion g. 

If no criterion is dominant, then lexicographical optimization may lead to 

a schedule that is unbalanced. In this case, simultaneous optimization may be  
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better choice. Evans [3] and Fry [6] distinguish different approaches in 

simultaneous optimization. 

2. Apriority optimization:  For any given function F, both criteria are used to 

form a single composite objective function F (f (ơ), g (ơ)), where ơ is the 

timetable taking into account, and an optimal solution to this problem is found.  

This function F, like δ f (ơ) +g (ơ), can be linear. 

Where δ is that constant which shows the in relation to the significance of 

criterion f in relation to criterion g, However, it might also it could be a 

quadratic or even more exotic function. 

3. Interactive optimization: in this case one or more obtained solutions are given, 

the decision maker must indicate which one is preferred, and if not satisfied yet, 

in which direction the search should continue. 

2.2 Finding the Optimal Solution 

        It's difficult to find algorithms that have the best solution for most multi-

objective optimization problems, such problems are called NP- hard. 

      Many authors pointed out the total completion time (∑Ci), the total tardiness 

(∑Ti), maximum completion time (Cmax), maximum tardiness (Tmax) and 

maximum earliness (Emax) are the most prominent measure among the 

scheduling objectives in industrial applications. 

We address precise approaches in this subsection's reminder. In the 

problem of minimizing total tardiness is NP-hard, any problem that includes 1// 

∑j Tj as a sub problem is NP-hard as well. It has been shown that certain in 

polynomial time, particular instances can be solved. The EDD-order solves the 

problem 1/pj =p/ ∑j(Ej+Tj) according to Garey et al.(1988) [30]. This result hold 

true for the problem   1/pj=p/ ∑j (αEj+βTj). Verma and Dessouky (1998) [31] 

showed that the problem 1/pj=p/ ∑j (αEj+βTj) is solvable in polynomial time if 
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the weights are agreeable, i.e., the works can be renumbered as α1 ≤ α2 ≤ …….≤ 

αn  and  β1 ≤ β2 ≤ ……..≤ βn, this covers the case with symmetric weights   αj =βj.  

        Fry and Kenog Leong (1987) [32] made the initial try to tackle the 

problem in general solving the 1//∑j (αEj +βTj) is a problem of integer linear 

programming; this was workable for cases with up to 12 jobs. Based on two 

lower bounds, Kim and Yano (1994) [33] applied Branch And Bound to solve 

the issue 1/ ∑j(Ej +Tj ); they can solve instances with up to 20 jobs. Hoogeveen 

and Van de Velde (1996) [34] reported a similar result when they apply Branch 

and Bound to solve the 1//(αEj+βTj) problem. They suggest six lower boundaries 

and a set of dominance  principles, however they are unable to tackle cases with 

more than 25 jobs. Recently, better results have been reported by Sourd and 

Kedad Sidhoum (2003) [35]  and Bulbul et al.[36] (submitted for publication). 

In both papers the problem is formulated as an integer linear programming 

problem using a time-indexed formulation. Each task Jj is split into Pj unit 

duration segments, where one of the constraints signals that the segments 

forming job Jj (j=1...n) must be assigned to consecutive intervals. 

          The problem in which two maximum cost criteria are minimized, 1//F 

(fmax, gmax), is solvable in O (n
4
) time, according to Hoogeveen (1996b) [15]. The  

ε-constraint technique is used in this algorithm: there are some O (n
2
) Pareto 

optimum points, and each sub problem is solved in O (n
2
). When it comes to the 

maximum cost criterion gmax is such that the elapsed time can be reduced to      

O ( n
3
 log n ). After renumbering g1 (t)≤ g2 (t)≤.... ≤gn (t) for all t∈ [0, ∑j pj], the 

running time can be reduced to O ( n
3
 log n ); notice this  Lmax satisfies this 

constraints. Hoogeveen also demonstrates a generalization of the above 

algorithm can solve the problem of simultaneously minimizing three maximum 

cost criteria in O (n
8
) time. There is only one Pareto optimum point, and the 

number of them is limited O(n
2
), takes O(n

2
) time O(n

6
). This algorithm can be 

extended to find all Pareto optimal points for a set of K maximum cost 
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parameters, but since there is no polynomial upper bound on the number of 

Pareto optimal points for K≥ 4, it is ambiguous if this algorithm is polynomial 

for fixed K. ( for arbitrary K the problem is strongly NP-hard). Sourd (2001) 

[37] considers the problem 1/ rj, pmtn /F (fmax, gmax ). He demonstrates that the 

number of Pareto optimal points is bounded by O(n
2
), and that each Pareto 

optimal point can be calculated in O(n
2
) time, resulting in an O(n

4
) algorithm 

overall. 

Because each of the sub problems can be solved as responsibilities 

problem, Chen and Bulfin (1990) [38]  show that the set of Pareto optimal points 

can be calculated by applying the ε-constraint approach for any combination of 

two performance parameters, one of which is Tmax. They claim that instead of 

Tmax, fmax or Emax can be achieved a similar result. 

2.3   Local Search Heuristic Methods 

2.3.1   Introduction  

            The term heuristic comes from the Greek word (heuriskein) which means 

to discover or find [39].  A heuristic, according to Reeves [25],  is a procedure 

for finding really good (i.e., near optimal) solutions at a low computational cost 

without being able to guarantee feasibility or optimality, or even, in certain 

cases, to state how close to optimality a particular feasible solution. The best 

solution can be found using the local search approach in a fair amount of time. 

2.3.2 Preliminaries 

       The first time local search was used to solve NP-hard problems was in 

the late 1950’s and early 1960’s [3]. Local search methods have the same 

feature: they iteratively move according to some, from one viable solution to 

another given rules, exploring the search space. Many of these methods are 

inspired from natural and they explore neighborhood of feasible solution. Local 
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search strategies vary in the problem representation they use, the neighborhood 

description they use on that representation, and the approach they use to search 

through that neighborhood. Evolution has influenced some local search 

methods. This suggests the need for the following definition: 

Definition 2.3.2.1 [4] 

  An instance of a combinatorial optimization problem is a pair (S,f), 

where the solution set S is the set of all feasible  solutions and the cost function f 

is a mapping f:s→R. The problem is to find a globally optimal (minimum) 

solution, i.e. an s
*∈S, such that f(s

*
)≤ f(s) for all s∈S. 

2.3.3   Representation of the Solution [4] 

Solution Representation depends on the problem specification. In a 

scheduling problem of n jobs, a solution is represented by a permutation of the 

integer 1,...,n. 

 

Definition 2.3.3.1 [2]   

           A neighborhood function N* is a mapping N
*
 : S→ P(S)  which specifies 

for each s∈ S subset N
*
(s) of S neighbors of s.   

  For permutation, there are three traditional neighborhoods. They're 

described through making use of specific moves to a series of tasks [21].   

1- Shift (insert): This neighborhood is obtained  by removing  a job from one 

position in the sequence (1,2,3,4,5,6,7,8) and insert it at another position either 

before (left insert) or after (right insert) the original position.  For example the  

schedules (1,5,2,3,4,6,7,8) and (1,2,3,4,6,7,5,8) are booths  neighborhoods. 

2- Interchange ( swap):  Swap two jobs that aren't necessarily next to each other. 

For example the schedule  (1,6,3,4,5,2,7,8) is a neighbor. 
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3- Insert a block: Insert a subsequence of jobs in a new position. The schedule 

(1,4,5,2,3,6,7,8) is an example of a neighbor. 

Definition 2.3.3.2 [4] 

         Let N* be a neighborhood function and (S,f) be an example of a 

combinatorial optimization problem.  A solution s
*∈S is referred to as a local 

optimal (minimal) solution with respect to N
*
 if f(s

*
) ≤ f(s) for all s∈ N

*
(s

*
). The 

neighborhood function N
*
 is called exact if every local minimum with respect to 

N
*
 is also a global minimum. 

2.4   Algorithms for Local Search: The Fundamental Notation 

The following is a feature that all local search methods have in common: 

1. Initialization: As the present solution, the start feasible solution s is 

generated randomly or using a heuristics method or some known rule. The 

value of the objective function in the present solution is computed. 

2.   Neighborhood generation: A move is made through the solution space S 

from neighbor to neighbor to select a neighbor s' of s. 

3. Acceptance test: Each local search method has its own acceptance test to 

determine whether s’ replace s as the current solution.  

4. Criteria for termination: The algorithm is repeated until some termination 

criteria are satisfied. The output will be the best solution generated. 

2.4.1 Descent Method (DM)[2] 

           The Descent Method is a simple form of neighborhood search methods in 

which only improving moves are allowed. The resulting solution is a local 

optimum, not necessarily a global optimum. 

 

 



Chapter Two                 Multi Criteria Scheduling Problem 
 

 
18 

The structure of a Descent Algorithm is presented in the figure (2-1) 

           Step (1): Choose a starting solution  s∈S. 

           Step (2): Select a element s’ ∈ N
*
 (s); ∆=f(s’)-f(s); 

                        If ∆<0 then s=s’. 

           Step (3): If f(s’)≥f(s), ∀ s’ ∈ N
*
 (s) , then stop; if not, go back to step (2). 

Figure (2-1) Structure of a Descent Algorithm 

2.4.2   Algorithm of Simulated Annealing (SA) 

           Simulated annealing (SA) has its origin in statistical physics, where the 

process of cooling solids slowly until they reach a low energy state is called 

annealing. It was originally proposed by Metropolus et al. [21] and was first 

applied to combinatorial optimization problems by Kirkpatrick et al. [40].The 

sequence of the goal function values in such an algorithm does not have to 

decrease monotonically. A neighbor s' in a specific neighborhood is generated 

(typically randomly) from an initial sequence s. 

Then the difference ∆= F(s') –F(s), in the values of the objective function  

F is calculated. When it comes to ∆< =0, sequence s' is accepted as the new 

iteration's starting solution. In the case ∆>0, sequence s’ is accepted as new 

starting solution with probability exp (-∆/T), where T is a temperature-related 

parameter. Typically, the current temperature is high in the early phases, making 

it relatively easy to escape from a local optimum in the first rounds.The 

temperature normally drops after a set of sequences  have been created. Often 

this is done by a geometric cooling scheme which we will also apply. 

          In this case, the new temperature T
new

  has been chosen so that T
new

 =λ 

T
old

, where  0<λ<1 and T
old 

denoting the old temperature and T 
new 

denoting the 

new temperature. A possible stopping criterion would then be a cycle of a final 

          Step (1): Choose a starting solution  s∈S. 

           Step (2): Select a sequence s’ ∈ N
*
 (s); ∆=f(s’)-f(s); 

                        If ∆<0 then s=s’. 

           Step (3): If f(s’)≥f(s), ∀ s’ ∈ N
*
 (s) , then stop; if no stopping criteria is meet, 

go back to   step (2). 

 



Chapter Two                 Multi Criteria Scheduling Problem 
 

 
19 

temperature, which is sufficiently close to zero. might therefore be used as a 

stopping condition. As in [41] we ascertain on the basis of the initial temperature 

T=10. 

Simulated Annealing Algorithm 

); 

                  P(∆,tk) =exp (-∆/tk); 

                  If ∆≤ 0, then s=s’, and if f(s)<f(s
*
) , then s

*
=s; else (∆>0); 

                  If a set of numbers is chosen at arbitrary, [0,1] ≤ p (∆,tk) , then s=s’ ; G=G+1, 

Step (3): If G≤ B return to the previous step (2), 

Step (4): Return to step (2) until some Stopping condition are fulfilled; update temperature; 

k=k+1;  

2.4.3   Tabu Search (TS) method 

                                     Figure (2-2) SA algorithm         

   2.4.3  Tabu Search (TS) method 

         The origins of Tabu Search (TS) can be traced back to the 1960s and 

1970s, and was Gupta presented it in its current form by (1989) [42]. The vast 

majority of TS applications began in the late 1980s [25]. As the name implies, 

one of the major concepts of TS is the use of a flexible memory (tabu list) to 

tabu particular moves for a period of time. When a move is chosen to lead the 

search from the current solution to its neighbor solution, it is immediately 

allocated to the tabu list in every iteration of TS. For a lot of iterations after that, 

this move will not be chosen. The size of the tabu list is determined by the 

number of iterations, and it is limited to a particular length. When the list 

reaches its maximum length, the move with the oldest assignment is removed 

Step (1):  Choose an initial solution s ∈S, s*=s; a starting temperature t0>0; k=0, G=1 

 Step (2): Define B; select s’ ∈ N
*
(s); ∆=f(s’)-f(s); 

                  P(∆,tk) =exp (-∆/tk); 

                  If ∆≤ 0, then s=s’, and if f(s)<f(s
*
) , then s

*
=s; else (∆>0); 

                  If a set of numbers is chosen at arbitrary, [0,1] ≤ p (∆,tk) , then s=s’ ; G=G+1, 

Step (3): If G≤ B return to the previous step (2), 

Step (4): Return to step (2) until some Stopping condition are fulfilled; update temperature; 

k=k+1;  
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from the list and the most recent assignment is inserted. With an appropriate 

design of the tabu list, TS is able to prevent cycling of the search and guide the 

search to the solution regions which have not been examined and approach to 

good solutions in the solution space. However, design of the tabu list may also 

prohibit the search to appealing solution regions. To compensate for this 

disadvantage, Gupta suggested the use of the concept of (aspiration criterion) 

defined as follows:  if a specific move is currently tabued and has the potential 

to lead  the search to good  solution regions, that move should be removed from 

the tabu list (aspired). The most prevalent one is when a tabued move is 

removed from the tabu list if it can provide a better solution than the existing 

one [42].  

2.4.3.1 Tabu Search (TS) algorithm  

   The (TS) algorithm discuss each of the following issues: 

a) Initialization  

  Determine the initial solution by an effectively sequence.  

b) Neighborhood Generation,  

  The stander methods can be used here (swap or insert); also one can use any 

modified method to generate a new neighborhood.  

c) Termination criterion  

   Stopping criterion for (TS) chosen by time less then 10m or by end of all 

iteration. 
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The outline of (TS) is given by the structure below: 

 

     Initial solution should be chosen (or generated at random) ( 

     put (p) as a present solution (s) 

     put (cost (s)) as a present solution (s) 

     create a tabu list that only contained (s) 

2. If the termination requirement is not met, 

3. Create (Ṕ) neighborhood for (s) (by insert or swap) 

4. Calculate the cost  (Ṕ) 

5. If cost (Ṕ) < f 

6.  s = p′    (s ← p′  )  (approve the change) 

7.   f = cost (p′ ) (f ← cost (p′ )) (modify the existing value) 

8.  tabu list= tabu list + p' 

9.  else if       cost(p') = f 

1 

 

                           

 

                          

                

                    Figure (2-3) TS algorithm procedure 

2.5   Genetic Algorithm (GA) 

2.5.1  Introduction 

     John H. Holland [43] was the first to suggest Genetic Algorithms (GA). 

step 1. Initialization: 

     Initial solution should be chosen (or generated at random) (p)   

     put (p) as a present solution (s) 

     put (cost (s)) as a present solution (f) 

     create a tabu list that only contained (s) 

step 2. If the termination requirement is not met, 

step 3. Create (Ṕ) neighborhood for (s) (by insert or swap) 

step 4. Calculate the cost  (Ṕ) 

step 5. If cost (Ṕ) < f 

step 6.  s = p′   (s ← p′)  (accept the move) 

step 7.   f = cost (p′ ) (f ← cost (p′ )) (modify the existing value) 

step 8.  tabu list= tabu list + p' 

step 9.  else if  cost(p') = f 

step 10. If p'   tabu list 

step 11. s= p' (s ← p′)  (accept the move) 

step 12.  tabu list= tabu list + p' 

step 13.   end 

step 14.   end if  

step 15.  end while  

Step 16. Solution =s 

16.  solution = s 
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They are search algorithms that simulate the biological evolution process by 

exploring a solution space. 

Genetic algorithms work with the population of solution each solution is 

represented as a string the (GA) technique based on evolution's mechanism. The 

solution space is usually represented by a population. New structures are 

generated by applying simple genetic operators such as (select, cross-over, and 

mutation). Members of the existing population with greater fitness values (i.e., 

better objective function values) will have a larger chance of being chosen as 

parents, which is comparable to Darwin's concept of survival of the fittest. 

Because the beginning population is produced at random, the ultimate solution's 

optimality cannot be guaranteed. As a result, at least one solution with the 

shortest must be included in the initial population (objective function of our 

problem) is included applying (select, cross-over and mutation), to generate new 

population and save the best solution in every generation. The best one from 

saved solutions becomes GA solution [43]. A solution's fitness value is a vector 

that represents the function values. A parent is generated by selecting the best 

solutions from the current population. Then, in each generation, solutions with 

high fitness values in each population are chosen and recombined to create a 

new offspring after applying the genetic operators for each new offspring we get 

a new population. It's worth noting that the mutation operation, for example, is 

based on the pairwise swapping of two tasks in the relevant sequence. There are 

several applications of Genetic Algorithms (GA) have been widely applied to 

various fields since 1975. They are applied to business, scientific, and 

engineering areas including:
 
 

(Optimization of complex function system Classifier system, Machine 

learning, Pattern recognition, Error diagnoses, Scheduling, Partitioning objects 

and graphs, Self-adapting system, Clustering, design and Process control). 

Researchers have showed that (GA) have been used in a wide variety of 
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optimization tasks, including numerical optimization and such combinatorial 

optimization problem as shop–job scheduling [44].   

 

2.5.2   Basic Stricture of Genetic Algorithm  

   The following are the main components of a genetic algorithm [45]:   

1. Encoding of the solution  

  Solutions are represented on the chromosome through a chromosomal 

representation (solution encoding).The natural permutation form of a solution 

for the machine schedule problem is a permutation of the integers 1,...,n, which 

describes the processing order of n jobs. A scheduling solution, or the natural 

permutation representation of a solution, is used to represent each chromosome. 

2.  Initial Population  

      The first population of chromosomes is created (initial population). The 

initial population of chromosomes is formed using scheduling heuristic 

dispatching rules (heuristics methods), combined with random methods, in order 

to approximate an ideal solution as closely as feasible. 

 3. Fitness (evaluation)  

The objective function is used to determine chromosomal fitness (fitness). 

Each chromosome is examined and its fitness is calculated for each chromosome 

when a population is produced. Finally, a fitness value is assigned to each 

chromosome based on the population size. 

4. Selection   

         Natural selection of some chromosomes occurs when chromosomes 

(parents) are picked from the population for combining to form new 
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chromosomes (children) using selection procedures (typically based on fitness 

value). 

     5. Genetic Operators 

Crossover and mutation operators are genetic operators that are applied to 

chromosomes with the goal of creating new members, i.e. offspring, in the 

population by crossing the genes of two chromosomes (crossover operators) or 

changing the genes of one chromosome (mutation operators): 

a) Crossover  

The role of a crossover operator is to combine elements from two parent 

chromosomes to generate one or more child chromosomes. 

  b) Mutation  

A mutation operator's job is to ensure that a population's diversity is 

maintained so that other operators can continue to work. 

 6. Substitute  

The natural selection of population members who will survive 

(replacement) is based on elitism. That is, to preserve the existing population's 

best chromosomes and their progeny. They'll build a new population to ensure 

the following generation's survival. 

7. Parameter Selection 

Natural  population convergence that is improved globally at each stage of 

the algorithm. For determining appropriate parameter values such as population, 

size crossover, and mutation. 

The design of the foregoing components, as well as the selection of 

factors like as population size, probability of genetic operators (i.e., crossover 



Chapter Two                 Multi Criteria Scheduling Problem 
 

 
25 

and mutation), and the number of generations, all influence the performance of a 

(GA). The following steps give us the outline of (GA): 

 

 

 

 

 

 

                         Figure (2-4)  Genetic algorithm 

The following cycle also give us the outline of (GA) 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Figure (2-5) Genetic algorithm cycle 

 

 

 

 

 

 

 

 

                                                                           Yes 

                                                                                                                      No 

 

 

 

Save the best 

solution is found 

yet 

New population 

 

Mutation 

Selection 

 

Evaluation 

 

The best solution found 

is the GA solution 

Initial population 

 

Stopping    

condition 

Cross-over 

    1.  the beginning:  make the first population 

     this population's worth 

      As a (GA) solution, save the best element from this population. 

2. while the halting condition is not met, choose a good solution (parents) 

Using genetic operators, create a new population from the existing population 

(crossover and mutation) this population's worth. If you discover a new best 

individual element, save it as a (GA) solution. 

3.  end while  
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2.6.1  Initial population  

   The initial population can be generated at random or can be constructed 

by using problem-specific knowledge. Chen et al.[46] used specific construction 

heuristics for the flow shop problem to build their first population. They claim 

that a good initial population increases the efficiency of GA. Delia Croce et al. 

[47]  select the solution for the initial population at random, but in order to speed 

up convergence, propose to choose an initial population partially produced with 

some quick heuristic. Reeves [48] compares the performance of GA with a 

completely random initial population and a population where one (or more) 

individual is obtained with a good heuristics rule and the remaining ones are 

generated randomly. The procedure with the specific-element in its initial 

population appears to arrive at its final solution more quickly, with no observed 

deterioration in solution quality. Inserting a high-fitness chromosome into the 

initial population is called (seeding) the success of the strategy is dependent on 

the availability of good starting solution; the large variation in the population 

size (m), used by different researches, ranging from a size of 20 Lee and Kim 

[16] to300 Delia Croce et al. [47]. Nordstrom and Tufekci experiment with 

different sizes concluded that increasing the population size seems to improve 

the quality of the solution. Large population does not show any significant 

improvement in the rate of convergence. Conversely, a population size of 20 

seems to be too small, because it runs with this size yield somewhat poorer 

performance [49]. 

2.6.2   Selection 

  Selections to choose good candidate solutions from current population 

for the next generation i.e.(for generate the next population). The number of 

these candidate solutions (k) is controlled (determined) according to the 

population size (m), which is selected in the initial steps of (GA).  Lee and Kim, 
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[16] compare the (s)-best reproduction operator with roulette wheel selection. 

The (s)-best scheme requires less computation time, but the quality of the 

solutions obtained with roulette wheel selection is better. 

2.6.3  Genetic Operators 

a) Crossover 

   The crossover serves to exchange information between chromosomes. 

Thus usually results in a useful combination of partial solutions on other 

chromosomes, and it speeds up the search process early on in the generation. 

However, the process of transferring gene information may result in some genes 

having redundant or missing properties. The crossover may result in an infeasible 

solution. Such events are most common in chromosomes that have been 

permuted. The reproduction in its first form is based on rank ordering. The first 

parent for the crossover is selected at random from among the best (s) 

individuals, where (s) is a parameter. The second parent is selected at a random 

from the rest of the population. This reproduction operator increases the 

greediness of the GA [49]. 

   The classical 1-point crossover is used by Lee and Kim [16] and 

compared with 2-point crossover. In a 2-point crossover, two crossover points are 

chosen at random and the segments in between are exchanged. The results show 

that 2-point crossover is slightly better, but that it also requires more computation 

time. Every time a permutation representation is employed, an appropriate 

crossover operator must be designed, as described in the previous paragraph. 

Partially matched crossover (PMX) is such an operator. Two crossover points are 

generated at random and the segments in between define a matching section. This 

matching is used to affect a cross through position-by-position exchange 

operations. For example, with crossover points after the 3rd and 6th element: 
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          Parents:                          Exchanging:                 Restoring: 

P1      789|251|638      →        798|483|634      →       795|483|612    =  Ch  1 

 

P2      956|483|271                  956|251|271                 986|251|473    = Ch  2 

In this example, the mapping is 2 ↔ 4, 5 ↔ 8 and 1 ↔ 3. The sections are 

swapped between the two crossover points. The elements 8, 3 and 4 outside the 

section are substituted according to the matching to restore feasibility in the first 

child. The elements 5, 2, and 1 are replaced in the second child. PMX is 

mentioned in a number of articles, including Chen et al. [46]. 

Delia Croce et al. [47] use linear order crossover (LOX). This operator 

chooses two random crossover points. The parts from parent 1's cross section are 

deleted from parent 2, leaving some "holes" (marked with a '.'). The holes are 

moved inwards from the extremities until they reach the cross section. The 

parent 1 cross section is then swapped with the parent 2 cross section. The other 

child is obtained in a similar manner. 

            Parents:                    Holes                      Sliding                          Exchanging 

P1       798|251|634              79.|251|6..                 792|…|516                    792|483|516      Ch 1 

 

P2        956|483|271             9.6|483|.7.                 964|…|837                    964|251|837      Ch  2 

 

LOX prefers to honor relative positions between elements and, to the 

extent possible, absolute places in the string. For example, the ordering of the 

first cross section (2,5,1) is completely destroyed in the first offspring by PMX. 

In the first offspring produced by LOX, the relative order, 2 before 5 and 1 and 5 

before 1, is preserved. 

Other researches resolve conflicts (a child in which some elements appear 

more than once) in a random fashion. Reeves [48]  also experiments with 

random choice to restore feasibility. But he reports that disruption in the 

offspring seems to be excessive. Therefore, he used the following 1-point 
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crossover: One crossover point is generated randomly. A child is composed of 

the subsections before the crossover point of the parent and filled up taking in 

order each "legitimate" element from the order parent. This 1-point crossover, 

denoted by LEGX. 

                       Parents                               Children 

                      7982|51634                       7982|56431 

                      9564|83271                       9564|78213 

 

There is another cross over scheme: (homogeneous mixture crossover) 

HMX  [41] this is determined by uniformly mixing the two parents by creating a 

set (m) of genes, with the odd position from the first parent and the even 

position from the second parent. Then, since we read the set (m) from the left, 

we keep the gene j if it does not exist in the child ch1 and put (0) in (m), else we 

keep the gene j in the second child ch2 and put (1) in (m), until the set (m) genes 

are exhausted. This method also results in the birth of two new offspring. 

 

     Parent                                 Mixture                                                      Child 

  P1= 798251634              799586245813623741                             Ch1 = 795862413 

   

  P2= 956483271              001000001100111111                              Ch2 = 958623741 

 

The rationale for this crossover is that it keeps the absolute positions of 

one parent while still preserving the relative locations of the other parent's 

children. However, after a number of generations, the population has converged 

and crossover alone cannot improve the population anymore. A diversifying 

component is necessary which can be offered by mutation. 

Our crossover (QMX) we chose the 1
st
 (crossover point at the end of) 

quart of parent no.1 and at the beginning of last quart of parent number 2. The 

jobs in the 1
st
 quart of parent number 1. are deleted from parent 2. and put them 
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in start of p2 and called the resulting sequence child no. 1; by same meaning we 

remove the jobs in the last quart of p2 from p1 and then put them in the last of 

p1 and called the new sequence child 2; for example: 

P1=13|245876  → 1
st 

quart of p1  =[1 3] 

P2= 486713|52 → last quart of p2 =[5 2] 

  

→ P1= 13…4…876 

→ P2= 4867… … 52 

 

→ ch1= 13486752 

→ ch2= 13487652 

 

b) Mutation  

 Syswerda introduced a number of mutation operators in scheduling study [49]. 

Two elements are chosen at random in this operator. Order-mutation: swaps 

these two items around. The second element is placed before the first in a 

position-mutation. The order-mutation method outperforms the position-

mutation method. Other studies employ the same techniques but refer to them by 

more traditional terms, such as "swap" and "shifting" in neighborhood search 

approaches. Chen et al. [46] change the order of the two elements. Reeves [48]  

conducts certain tests with both operators. "Shift" appears to be preferable to 

"swap," thus "shift" is used in his final version. 

Tate and Smith [50] use another form for mutation. They pick two 

random points in a string and reorder all elements within the substring confined 

by the two chosen elements. 

 

                    Before                                                        After 

               7 9|8 2 5 1|6 3 4                →                   7 9|1 5 2 8|6 3 4 
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2.6.4 Termination 

   Classically, When a certain number of generations (or iterations) have 

been completed, the method comes to an end. For example, Chen et al. [46]  

observe that the solutions become stable after twenty generations; therefore, 

they use 20 generations. Because of this fixed number of generations, it is 

possible that some generations at the end of the process are superfluous. To 

avoid this, the procedure can be terminated when the best solution in a 

population is not better than the previous population for a number of iterations. 

Lee and Kim [16] used this termination condition. There are other stopping 

criteria which terminate the procedure when the objective function values for the 

best and worst individuals in the population are equal [49]. The algorithm of Lee 

and Kim [16] stop when the improvement of the average fitness value in one 

generation is less than 0.01% of the average fitness value in the preceding 

generation. 

2.7   Some applied examples of Multicriteria problems [26]. 

2.7.1  Some examples  

        Several criteria are involved in many scheduling challenges in the 

production domain. There are various works in the literature that deal with a 

category of difficulties that are ideally suited to a situation: the requirement to 

generate “Just-in-Time” products. This requirement translates into two wishes: 

the first is to avoid delivering late to the client, and the second is to avoid storing 

finished goods. As a result, generating "Just-in-Time" is a compromise between 

producing somewhat late and not too early. In the literature, there are numerous 

definitions of "Just-in-Time" scheduling. We now give a set of scheduling 

challenges that relate to real-world scenarios, regardless of their application 

field. 
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2.7.2  Chemical and electroplating industries            

This category of problems returns us to the Hoist Scheduling Problem in 

the literature. A limited number of chemical-filled tanks are provided for the 

galvanization treatment of items. The arrival of items in the shop follows a 

cyclic pattern. These objects are transported from one thank to the next by a 

transportation robot (or a group of robots) that is normally suspended above the 

tanks. A variable of the problem is the processing time, or soaking time, of 

things in the tanks. Indeed, the chemical engineers specify a minimum and 

maximum soaking time for each soaking, allowing the analyst free to determine 

the ideal times. The primary goal is to find a cycle time that is as short as 

possible, i.e. a minimum value for the makespan requirement. Nonetheless, two 

aspects compel us to examine this issue from a Multicriteria perspective. To 

begin with, actual experience shows that the timing of transportation robot 

movement (handling and placing of things into the tanks) is the most 

challenging component to determine in order to efficiently reduce cycle time. 

Following that, for the majority of the tanks (and hence the chemical baths), 

observing the minimal soaking duration is the only thing that matters. In 

actuality, we can sometimes go above the maximum soaking time if it helps us 

better regulate the robots' movements. When minimizing cycle time and, for 

example, a weighted total of overtaking the soaking times relative to the 

permissible maximum soaking times, the problem becomes bi-criteria. 

2.7.3  Steel hot rolling mill industry 

          The difficulty with steel hot rolling mills is that they produce steel coils 

from steel slabs. The shop can be divided into two sections in this problem: a 

large slab yard where steel slabs are stacked awaiting processing by the rolling 

mill, and the rolling mill in itself. Each slab has its own unique properties and 

can be used to treat a variety of steel coils. When a slab is chosen to be 
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processed, it is hauled to the rolling mill by cranes and placed in a furnace where 

it is heated to a high temperature. After leaving the furnace, the hot steel slab is 

rolled through a series of rolls under high pressure to produce the desired width, 

thickness, and hardness for the steel coil. It's worth noting that each shift of 

processed orders has an ideal sequencing form connected with it, which takes 

into account additional constraints such as the furnace and the fact that we can't 

change its temperature as much as we'd like. One of the planner's goals is to 

reduce pressure setting variations between two consecutively generated coils 

because this might have a significant impact on their quality. Furthermore, 

because the rolls come into touch with hot steel, they quickly wear out and must 

be replaced. As a result, coil production is scheduled in shifts of a few hours. 

There are also a few other limits to consider. The goal is to sequence the steel 

coils in such a way that the value of the coils rolled in the sequence is 

maximized, changes in characteristics between subsequent coils are minimized, 

non-essential crane movements are minimized, and departure from the optimum 

sequencing shape is minimized. 

2.7.4   Car assembly 

  Subcontractors face multicriteria scheduling challenges as a result of car 

production lines. This is especially true when it comes to car seats. The 

automobile manufacturer and the car assembler are in sync, and a vehicle's 

manufacturing line sequence automatically instructs the manufacturer to produce 

seats. This establishes a deadline for their delivery. This is a Just-in-Time 

scheduling issue since early creation of a seat incurs additional storage expenses 

for the assembler (higher than storage costs of an engine). Late seat deliveries, 

on the other hand, cause the assembly process to come to a standstill. The car in 

question must therefore be moved to the head of the line, resulting in increased 

production costs. 
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3.1   Formulation of the Problem 

       A set of n independent jobs N=}1,2,...,n{ are available for processing at 

’time zero, each job j (j=1,2,...,n) is to be processed  without interruption on a single 

machine that can be handle only one job at a time, requires processing time Pj and 

due date dj. Completion time is calculated based on a specified job schedule δ, Cδ(j) 

=  ∑ p
j
i=1 δ(i) , total tardiness ∑ Tn

j=1 δ(j) , where Tδ(j) = max }Cδ(j) - dδ(j) ,0{ and 

maximum earliness  Emax (δ) = max} Eδ(1), Eδ(2),…, Eδ(n){ can be computed where 

Eδ(j) = max } dδ(j) - Cδ(j) ,0{. The aim is to organize the jobs so that they can be 

completed in a timely manner objective function of three criteria ∑ Cn
j=1 j + ∑ Tn

j=1 j + 

Emax is minimized. This problem is NP-hard since the ∑ Tn
j=1 j is NP-hard. 

This problem is denoted by the letter (P), and it can be described as follows:  

Z= minδS} ∑ Cn
j=1 δ(j) + ∑ Tn

j=1  δ(j)  + Emax(δ){ 

s.t. 

Cδ(1) = pδ(1)  

Cδ(j+1) = Cδ(j) + pδ(j+1)                                     j=1,2,…,n-1                              

Cδ(j) ≥ 0                                                        

Tδ(j) ≥ Cδ(j) - dδ(j)                                             j=1,2,…,n                   …(p) 

Tδ(j) ≥ 0 

Eδ(j) ≥ dδ(j) - Cδ(j)                                             j=1,2,…,n 

 Eδ(j) ≥ 0      

Where S denotes the set of all schedules. 
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3.2   An Application of the Branch and Bound (BAB) Algorithm for 

the Problem (P) 

The initial upper bound is determined by the specific problem at the start of 

the solution process. The shortest processing time (SPT) rule, which is 

sequencing’the jobs in non-decreasing order of their processing time (Pj), j=1,2,...,n, 

is obtained by the heuristic method proposed and applied once at the root node of 

the (BAB) search tree to find the upper bound (UB) on the minimum value of 

(∑ Cn
j=1 j + ∑ Tn

j=1 j + Emax ).  

To calculate a lower bound (LB) for each node, let δ be the sequencing jobs 

and δَ be the un sequencing jobs, hence. 

LB(δ) =Exact cost of (δ) + cost of  ( δ ).́  

Where cost of  δ  ́  is obtained by using lower  bounding  procedure. 

Decomposing the problem into three sub problems (SP1), (SP2) and (SP3) as 

follows: 

Z1= min𝛿∈𝑆{∑ C𝛿(j)  
n
j=1 } 

s.t. (SP1) 

           C𝛿(1)  = P𝛿(1)   

          C𝛿(j)  =C𝛿(j−1)  +P𝛿(j)                              j=2,3,…,n  

          C𝛿(j)  ≥ 0 

             This sub problem (SP1) is solved by (SPT) rule. 

           Z2= min𝛿∈𝑆{∑ T𝛿(j)  
n
j=1 }  

            s.t.  (SP2) 
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           T𝛿(j)  ≥ C𝛿(j)  - d𝛿(j)                              j=1,2,…,n 

  Tδ(j) ≥ 0 

This sub problem (SP2) is NP-hard. 

 Z3=min
𝛿∈𝑆

 {Emax(𝛿) }  

 S.t. (SP3) 

             E𝛿(j)  ≥ d𝛿(j)  - C𝛿(j)  ,                             j=1,2,…,n                         

 E𝛿(j)  ≥ 0 

This sub problem (SP3) is solved using the minimum slack time (MST) rule, 

which involves sequencing jobs in non-descending order of slack time dj-pj, 

j=1,2,…,n. 

  Thus, the lower bound (LB) for the problem (p) is the sum of minimum value 

of the sub problems (SP1), (SP2) and (SP3). We proposed that the minimum value 

for ∑ Tj is obtained by ∑ Tj (SPT) – Tmax (EDD), Where EDD is the earliest due 

date value, i.e., sequencing the jobs in non-decreasing order of their due dates. 

   It is clear that ∑ Tj (SPT) – Tmax (EDD) ≤ ∑ Tj   

Let Z1,Z2 and Z3 be the minimumsvalues of (SP1), (SP2) and (SP3), 

respectively, and use the following theorem to obtain a lower bound for (P). 

Theorem (3.1) [51]: 

                If Z1,Z2,Z3 and Z are the minimum objective function values of 

(SP1),(SP2),(SP3) and (P) correspondingly then Z1+ Z2 +Z3 ≤ Z. 
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LB = Z1+ Z2 +Z3 is a lower bound (LB) for the problem (P) obtained by applying 

theorem (3.1). 

An example : Suppose the problem (P) has the following data: 

        j         1       2       3       4 

       pj         2       3       1       6 

       dj         8       4       6      10 

   

      The BAB algorithm tree to find the optimal solution for the problem (P) is as 

follows: 

  

The optimal sequence is (2,3,1,4) with the optimal value 29. 
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3.3 Practical Results  

In the following subsections we interduce the practical results from determine the 

parameters and computational and the outcome tables. 

3.3.1 Deterministic the Parameters for the Algorithms 

A) BAB algorithm 

 we chose the forward branching technique as we mention in 1.2.2, and for the 

stopping criteria the algorithm will stop after fix period of time specially after (1800 

second). 

B)  DM algorithm  

we chose the swap method to generate new solution and for the stopping criteria the 

algorithm will stop after fix number of iterations here we chose (30,000) or a fix 

period of time specially after (600 second). 

C)  SA algorithm  

we chose the swap method to generate new solution and for the stopping criteria 

We employ a predetermined number (30,000 in this thesis) of generated solutions as 

a stopping criterion for all heuristics because we need to be unbiased, or a fix period 

of time specially after (600 second). And we ascertain on the basis of the initial 

temperature T=10. 

D) GA algorithm 

i) Initial population generation  

   Reeves [25] compares the performance of GA with a completely random 

initial population and a population where one (or more) individual is obtained with 

a good heuristic and the remaining ones are generated randomly. The procedure 

with the specific-element in its initial population appears to arrive at its final 

solution more quickly. We use the above technique for our problem, and then we 
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construct the initial population by using some individual solutions found by some 

good known sequence like (SPT, EDD, MST and Lowler). 

ii) Selection  

         Selections to choose good solutions from current population. The number of 

this selected solutions (k) is controlled (determined) according to the population 

size (m), moreover the population size (m) can be found by these number of 

selected solutions (k), as follows: 

  𝒎 = 𝟐𝒌𝟐 + 𝒒 , where 2𝑘2 solutions come from the crossover operation, and the 

𝑞 solutions generated randomly to escape from the local optimum, these number of 

random solutions add at each iteration, the number 𝑞 represent approximately 10% 

from the hole population size m, in this way we get the following table in which we 

list the population size (m) for some (k) selected candidate solutions and the 

number of random generated solutions: 

k 5 6 7 10 

q 10 8 12 20 

m 60 80 110 220 

 

  iii)  Genetic operator 

 Cross over: Among the crossover rules that introduced in 2.6.3 {PMX, LOX, 

LEGX, HMX, QMX} we chose the our cross over (QMX) since it gives the best 

influence of others rules. 

 Mutation: We chose (swap mutation), or (Order-mutation) since it performs better 

than position-mutation, as we see after test them by multiple runs on several 

examples.     
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iv)  Population size with iterations and stopping condition  

   The efficiency of (GA) is dependent mainly on the (population size and 

stopping condition) parameters, since both of them are determine the speed of (GA) 

and the convergent to nearest optimal solution, so we should be determined them in 

more precisely. The most important question here is (how to determine these 

values?). We suggested that: the populating size (m) is chosen from the set A= {60, 

80, 110, 220}, as we mention the range from a size of (20 to 300), and the number 

of iterations is chosen from the set B= {50, 100, 250, 500}. Then for each value of 

(A) solve same example along all values of (B), in this way we will have (4x4) 

values matrix and (4x4) times matrix for each example we solve it. So, we chose 

population size = 80 and iteration number =100; since we note that there is no good 

improve ness by increasing the population size and (or) iterations, while it 

consumes more time. For stopping condition, in this study we shall terminate the 

GA cycle after a fix number of generation (100 as we mention above) or after a fix 

period of time (600 second as the algorithms that used in this work). 

3.3.2 Computational Results  

        The BAB algorithm and local search algorithms are put to the test by coding 

them in MATLAB R2019b and running them on a computer. Test problems are 

generated as follows: for each job j, an integer processing time pj is generated from 

the discrete uniform distribution [1,10]. Also, for each job j, an integer due date is 

generated from the discrete uniform distribution [P(1-TF-RDD/2), P(1-

TF+RDD/2)], where P= ∑ pj
  

n
j=1  depending on the relative range of due date (RDD) 

and on the average tardiness factor (TF). The values 0.2,0.4,0.6,0.8,1.0 are taken 

into account for both parameters. For each selected value of n, two problems are 
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generated for each of the five values of parameters producing 10 problems for each 

value of n, where the number of jobs n=from 3 to 40,000 . 

3.3.3 Tables of Results 

   The following tables give the comparative of computational results and the 

time (in seconds) for the problem (P). When a problem cannot be solved to its 

optimality within the time constraint of 1800 seconds, the problem is abandoned. 

Symbols we have all we need in all of these tables: 

  Ex:  Number of example. 

 Node:  Number of nodes. 

 Optimal:  The optimal value that is obtained by BAB algorithm. 

 No.of opt.:  Number of examples that catches the optimal value. 

 No.of best:  Number of examples that catches the best value. 

 DM:  The value that is obtained by descent method. 

 SA:  The value that is obtained by simulated annealing method. 

 GA: The value that is obtained by Genetic Algorithm. 

  Time:  Time in seconds. 

      

                       1, if the example is solved 

   Status =  

                       0, otherwise      
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Table 3-1: A comparison between the optimal solutions obtained by BAB 

algorithm and the values result of local search algorithms at n=5 

Local Search BAB 

Time GA Time SA Time DM Status Time Node Optimal Ex n 

0.339277 74 0.490253 74 0.431927 74 1 0.058544 98 74 1  

 

 

 

5 

0.15029 101 0.484132 101 0.432393 108 1 0.003252 52 101 2 

0.141369 134 0.396143 134 0.42002 134 1 0.009876 307 134 3 

0.145799 74 0.410846 74 0.42304 74 1 0.002755 73 74 4 

0.15266 147 0.391997 147 0.378842 147 1 0.006027 195 147 5 

0.140788 94 0.420832 94 0.428725 94 1 0.004961 156 94 6 

0.141206 144 0.413769 144 0.414412 144 1 0.006223   196  144 7 

0.150554 126 0.421714 126 0.412513 126 1 0.003537 110 126 8 

0.160451 128 0.448604 128 0.443888 128 1 0.004153 132 128 9 

0.136119 128 0.429997 128 0.403901 128 1 0.004861 140 128 10 

 10  10  9 .   No. of 

optimal 

  

 

 

Table 3-2: A comparison between the optimal solutions obtained by BAB 

algorithm and the values result of local search algorithms at n=7   

Local Search BAB 

Time GA Time SA Time DM Status Time node Optimal Ex n 

0.176869 149 0.434465 149 0.451028 149 1 0.074127 576 149 1  

 

 

 

7 

0.157082 181 0.451889 181 0.44275 181 1 0.049056 1649 181 2 

0.155311 155 0.435941 155 0.448604 155 1 0.054323 1865 155 3 

0.160151 319 0.436842 319 0.44135 331 1 0.215803 7296 319 4 

0.158759 159 0.446451 159 0.447995 159 1 0.030626 993  159 5 

0.153841 181 0.432911 181 0.424566 181 1 0.044574 1444 181 6 

0.154091 163 0.429353 163 0.42765 163 1 0.029366 1013 163 7 

0.183691 185 0.430049 185 0.488119 185 1 0.044981 1401 185 8 

0.154093 108 0.458326 108 0.436393 108 1 0.153238 5168 108 9 

0.155878 227 0.429537 227 0.441418 227 1 0.053289 1853 227 10 

 10  10  9 .   No.of 

optimal 
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.Table 3-3: A comparison between the optimal solutions obtained by BAB 

algorithm and the values result of local search algorithms at n=9 

Local Search BAB 

Time GA Time SA Time DM Status Time node Optimal Ex n 

0.17119 298 0.530969 298 0.522179 300 1 0.103231 1512  298 1  

 

 

 

9 

0.168965 206 0.534949 206 0.52964 206 1 0.669483 19404 206 2 

0.168887 200 0.537272 200 0.549212 200 1 1.29119 46645 200 3 

0.16837 341 0.527742 341 0.576686 341 1 1.304335 47239 341 4 

0.167691 196 0.535685 196 0.528663 196 1 0.461582 16954  196 5 

0.167103 304 0.51874 304 0.538602 304 1 0.726086 24716 304 6 

0.168946 140 0.526103 140 0.534924 140 1 0.500476 16888       140 7 

0.16809 378 0.526531 378 0.527394 378 1 2.8047 98906  378 8 

0.165107 322 0.511782 322 0.500353 322 1 0.743506 27287  322 9 

0.166214 301 0.518089 301 0.520649 301 1 0.829983 30011 301 10 

 10  10  9 .   No. of 

optimal 

  

 

In table3-1,2,3 the number of examples that gives local search values equal to the 

optimal value is 9 for DM, 10 for SA and 10 for GA when n =5 , n=7 and n =9 

 

Table 3-4: A comparison between the optimal solutions obtained by BAB 

algorithm and the values result of local search algorithms at n=11 

Local Search BAB 

Time GA Time SA Time DM Status Time Node 0ptimal Ex n 

0.193609 380 0.56491 380 0.561954 383 1 25.53819 862639  380 1  

 

 

 

11 

0.18624 614 0.565943 618 0.555486 627 1 146.780577 4883141 614 2 

0.183437 436 0.60058 436 0.58563 437 1 34.5071715 1138123 436 3 

0.189434 340 0.558479 340 0.561673 346 1 7.0207728 225082  340 4 

0.179975 393 0.558525 393 0.541898 393 1 19.4370768 666300    393 5 

0.233818 528 0.555971 528 0.555718 528 1 8.5266774 284273 528 6 

0.183895 451 0.652591 451 0.588117 452 1 22.042973 722008       451 7 

0.186993 284 0.557501 284 0.565228 284 1 13.8482672 483145    284 8 

0.184799 478 0.55208 478 0.565022 478 1 25.8682167 846894   478 9 

0.184909 588 0.549853 588 0.569821 588 1 103.426301 3435594    588 10 

 9  9  5 .   No. of 

optimal 
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Table 3-5: A comparison between the optimal solutions obtained by BAB 

algorithm and the values  result of local search algorithms at n=13 

Local Search BAB 

Time GA Time SA Time DM Status Time Node 0ptimal Ex n 

0.2453 793 0.669855 799 0.72278 797 1 1329.71367 43497668 792 1  

 

 

 

13 

0.201711 569 0.61263 569 0.575887 570 1 774.251406 25103067 569 2 

0.246121 485 0.579348 485 0.6511 483 1 733.735107 24079250 483 3 

0.248464 490 0.590707 491 0.625585 490 1 342.161331 9327944 490 4 

0.247236 645 0.698971 649 0.706026 645 0 1800.00002 41447845 645 5 

0.198438 689 0.699526 690 0.664823 690 0 1800.00003 40341289 689 6 

0.195141 725 0.694032 729 0.678124 725 0 1800.00011 40336942 725 7 

0.244738 586 0.589377 588 0.673539 586 1 940.108954 20875539 586 8 

0.245802 485 0.697011 486 0.695372 485 1 876.02978 20710738 485 9 

0.247795 846 0.706807 851 0.725083 846 0 1800.00009 41276248 846 10 

 6  2  2 .   No. of 

optimal 

  

  

   Table 3-6: The values result of local search algorithms at  n=100 

Ex Best DM Time SA Time GA Time 

       1      28207        28260  1.842397        28778     1.856365 28207 1.729882 

       2      31853      32315 1.974563        32872     2.04155 31853 1.993012 

       3      32895      33109 1.926219        33791     2.516388 32895 2.018078 

       4      25340      25486 2.085834        26146     1.890639 25340 1.666724 

       5      26423      26439 1.922907        27173     1.805007 26423 1.684188 

       6      33295      33295 1.747778        33380     1.768575 33306 1.625732 

       7      33454      33484 2.086676        33610     1.73712 33460 2.485722 

       8      32158      32329 1.853215        32797     1.093407 32158 1.622862 

       9      29264      29396 2.168188        29738     1.151685 29264 1.651836 

      10      28352      28389 2.153944        28681     1.804689 28352 2.235184 

  No. of  best         2              0  8  

 

In this table, the number of examples that gives the best known solution yet is 2 for 

DM, 0 for SA and 8 for GA.    
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Table 3-7: The values  result of local search algorithms at  n=500 

Ex Best DM Time SA Time GA Time 

1 714129 714129 8.0811966 721116 7.42512 715217 33.567855 

2 658590 660702 9.442675 673628 8.334985 658590 31.376931 

3 752400 752400 8.6926941 757187 7.284213 753253 32.96676 

4 737029 737029 9.1847774 746586 8.450665 737878 31.50552 

5 675646 675646 7.2728892 684939 7.187699 678507 34.525774 

6 735378 735378 7.5283349 740941 7.185011 736329 35.142774 

7 749799 749799 7.1421142 754688 7.104844 751863 29.485768 

8 759633 759663 12.582026 764393 8.055614 761132 35.992534 

9 889358 889358 8.2353456 890449 8.127139 889899 35.726727 

10 932929 932929 8.053281 932948 8.207121 932938 33.884866 

 No.of  best 9  0               1  

 

  Table 3-8: The values  result of local search algorithms at  n=1000 

Ex Best DM Time SA Time GA Time 

1 2553790 2572352 15.882113 2578112 16.374763 2553790 128.369943 

2 2946110 2951049 15.638138 2953360 15.594807 2946110 130.81592 

3 2991605 2996568 15.91777 2999152 16.146398 2991605 132.545383 

4 2838114 2842095 16.198844 2844309 16.044214 2838114 123.581505 

5 2896048 2905992 14.980914 2910830 15.349176 28960448 123.017859 

6 3173478 3174271 14.418465 3175709 14.149838 3173478 128.410823 

7 3484831 3485135 15.917629 3486448 14.154318 3484831 130.947455 

8 2886778 2895780 14.918354 2900328 14.784146 2886778 123.149516 

9 3372625 3374208 14.817342 3376331 14.878303 3372625 120.304961 

10 3216306 3217585 13.767239 3219015 13.988947 3216306 115.164895 

 No. of  best 0  0  10  

       

     Table 3-9: The values  result of local search algorithms at  n=5000 

Ex Best DM Time SA Time GA Time 

1 73524007 73536677 79.942571 73536865 71.185332 73524007 605.118035 

2 63207491 63255141 75.938803 63255660 76.811952 63207491 612.660498 

3 66903616 67113370 76.183674 67113824 78.896933 66903616 618.602769 

4 79680417 79686076 75.849555 79686221 75.530779 79680417 615.510455 

5 67804848 68036332 76.48351 68036831 77.186682 67804848 615.643608 

6 70477608 70491804 77.321727 70492253 77.91059 70477608 606.714346 

7 73442537 73448819 74.704688 73449028 74.50419 73442537 622.650479 

8 91175307 91175790 61.24575 91175828 77.452048 91175307 616.703271 

9 93941993 93941993 59.54845 93941995 71.766329 93941994 611.5997935 

10 76716103 76721985 60.44667 76722261 74.890752 76716103 604.545843 

 No. of  best 0  0  10  
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Table 3-10: The values result of local search algorithms at  n=10000 

Ex Best DM Time SA Time 

            1   289606034   289606034     155.2902      289606135    147.3921     

            2   273653864       273653864           153.0772       273653987        145.3847   

            3   285225751       285225751         154.83       285225807        147.4262   

            4   284408782       284408782          162.3384      284408938       151.158    

            5   276890195       276890195          154.9541     276890298     162.6316   

            6   336633779       336633779       137.8737     336633828        144.5711 

            7   321570865       321570865          143.1081      321570917        135.8353   

            8   346921027      346921027          146.2184      346921063       145.0729    

            9   299196329     299196329          145.0793      299196441       147.0557    

           10   305059249   305059249     147.2527    305059347    146.8354 

                No.of  best              10                   0        

 

In this table, the number of examples that gives the best solution is 10 for DM and 0 

for SA. 

Table 3-11: The values  result  of local search algorithms at  n=20000 

Ex Best DM Time SA Time 

1 1198810298 1198810298 237.7489 1198810352 240.5755 

2 1166318774 1166318774 240.2549 1166318816 235.574 

3 1035314962 1035314962 242.8797 1035315030 239.9499 

4 1166864162 1166864162 238.9088 1166864226 240.2091 

5 1234855812 1234855812 239.3137 1234855850 236.8713 

6 1170262797 1170262797 239.1409 1170262828 237.8809 

7 1146405539 1146405539 240.5716 1146405586 241.4909 

8 1246434331 1246434331 237.116 1246434352 235.1815 

9 1366225692 1366225692 235.0879 1366225709 233.0021 

10 1545672927 1545672927 229.7283 154672927 228.244 

 No.of  best 10  1  
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Table 3-12: The values  result of local search algorithms at  n=30000 

Ex Best DM Time SA Time 

1 2316579635 2316579635 368.9691 2316579694 365.4173 

2 2371616071 2371616071 7000.079 2371616117 367.3791 

3 2754714509 2754714509 493.5022 2754714539 492.3983 

4 2912393595 2912393595 477.308 2912393611 472.8284 

5 2568730859 2568741545 10916.23 2568730859 1637.515 

6 3082704178 3082704178 386.4808 3082704201 600.0024 

7 3073066706 3073066706 372.3755 3073066715 371.7001 

8 2838453378 2838453378 363.0306 2838453387 356.1615 

9 2906051952 2906051952 470.5902 2906051976 356.743 

10 3165132308 3165132308 481.673 3165132313 468.6973 

 No. of  best 9  1  

 

  Table 3-13: The values  result of local search algorithms at  n=40000 

Ex Best DM Time SA Time 

1 4517342015 4517342015 468.3425 4517342036 463.6928 

2 4342910570 4342910570 483.8663 4342910604 468.9732 

3 4697900554 4697900554 463.0457 4697900560 466.0637 

4 4239059324 4239059324 480.22 4239059359 467.2866 

5 5175147897 5175147897 466.3659 5175147903 461.4844 

6 4470139888 4470139888 505.815 4470139898 465.3543 

7 4819997499 4819997499 463.9291 4819997510 466.0675 

8 4717213474 4717213474 477.5863 4717213490 461.3611 

9 5441662736 5441662736 460.291 5441662746 459.9377 

10 5058154973 5058154973 463.9767 5048154987 460.7368 

 No. of  best 10  0  
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3.4 Conclusions and Future Work 

3.4.1 Conclusions 

      This thesis proposes an effective branch and bound (BAB) algorithm  to 

find the best  solution to  the problem of reducing a  ∑ Cj  
n
j=1 +∑ Tj  

n
j=1 + Emax. On a 

large number of test problems, the (BAB) method is used. The BAB algorithm is 

efficient for n ∈ {5,7,9,11,13} , as evidenced by the computed values. Finding 

approximation solutions for the problem can also be achieved by applying  

simulated annealing (SA) , local search algorithms descent method (DM) and 

Genetic algorithm (GA). On a broad set of test problems, a computational 

experiment for local search algorithms is presented. The Genetic algorithm (GA) is 

more effective for problem of size n= 100,500,1000,5000. The descent method 

(DM) is much more successful for problems of large size 

n=10000,20000,30000,40000. Where the computational time of DM is close to that 

of SA. This is the most important we can derive from our computational results.    

3.4.2  Future Work     

 An interesting future research topic would include the development of the lower 

bound (LB), the improvement of upper bound (UB) by using the results of local 

search algorithms in order to improve the efficiency of BAB algorithm and 

experimentation with Tabu Search (TS) algorithms, and use multi-start SA 

algorithm. 
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مستخلصال  
 

 
 أ

 المستخلص

  ثلاثتة    ال قتايس  . المهواحتدماكظتة علت   مقتايس الجدولتة متدتد ا ال مستللة  ، يتت  الظرتر فتيلرسالة في هذه ا      

 .Emaxوالحد الاقص  للوقت المبكر  Tj∑والتلخسر الكلي   Cj∑المستخدمة هي وقت الاتمام الكلي 

 التة لتقلست   j  ،j=1,2,…,n وظتاف  والتقريبتي للنهدف في هتذه الدااستة الت  ايجتا  الجتدوم الامظتي الامثت  

 .+Tj+Emax ∑ ∑Cjللدالةالمقايس    الهدف متدد 

 قستد. وقمظتا ااتتتقاا الللمستالة لايجا  الح  الامث   (BAB)لح  هذه المسالة نستخدم خواازمسة التقسد والتفرع

. يتت  ارتراا التجتاال الحستااسة لخواازمستة   (BAB)تفرع والتقسد اللاستخدامه في خواازمسة  (LB)الا ن  

BAB  علتت  مجموعتتة كبستترا متتا متتتكلا  الاختبتتاا. هظتتا ترهتتر  تتدواةNP  لهتتذه المستتللة اه انتته لتتس  متتا

 .n=13ال  حلت ما الدثوا عل  الح  الامث  اسرعة والمسللة الممكا  اف

ا  البحتث المحلستة لايجتا  حلتوم اجهد حسااي هافت  نستتخدم خواازمست مث  لذلك ادلا ما البحث عا الح  الا

، طريقتتة الظستت   احتتث محلستتة قتتت حستتااي اقتت . تتت  ت بستتز ثتتلا  خواازمستتا  قريبتتة متتا الحتت  الامثتت  متت  و

(DM)  والتلديا المحاكي(SA)  والخواازمسة الوااثسة (GA)لهذه المسالة. 

طترا الحت . تمتت متا ارت  تقتس  فدالستة  BABم  خواازمسة  GAو   SAو  DMتت  مقاانة الخواازمسا  

  ساغة الاستظتارا  عل  كفااا الخواازمسا ، اظااً عل  نتافج التجاال الحسااسة.
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